Bassi, Matteo

Assistant Professor

He was born in Padova, Italy, in 1985. He received the B.S., M.S. (Summa cum Laude) and Ph.D. degrees in Electronics Engineering from the University of Padova, Italy, in 2007, 2009 and 2013, respectively. In 2008 and 2009 he was an EAP student at the University of California, San Diego. In 2012 he was a visiting Ph.D. student at the Analog Integrated Circuits Laboratory, University of Pavia, Italy.

Since 2013 he is Assistant Professor at the Analog Integrated Circuits Laboratory, University of Pavia, Italy.

His main research interests are in the field of RF integrated circuits. He co-developed and realized the first CMOS integrated high resolution radar transceiver front-end for breast cancer detection. Presently, he is working on mm-wave systems and and high-speed wireline serial interfaces.

He is recipient of the IEEE Microwave Theory and Techniques Society Graduate Fellowship for Medical Applications 2012.


TEACHING

In the framework of the Laurea Magistrale in Bioengineering, he teaches Strumentazione Biomedica LM (info)


PEER REVIEW ACTIVITY

Matteo Bassi serves as a reviewer for IEEE Journal of Solid-State Circuits, IEEE Transactions on Microwave Theory and Tecniques and IEEE Transactions on Circuits and Systems I and II.


CONTACTS and LINKS

E-mail: matteo.bassi@unipv.it
Office: +39 0382 985742
Research Gate
Google Scholar


PUBLICATIONS

2016

  • [DOI] M. Bassi, F. Radice, M. Bruccoleri, S. Erba, and A. Mazzanti, “A High-Swing 45 Gb/s Hybrid Voltage and Current-Mode PAM-4 Transmitter in 28 nm CMOS FDSOI,” IEEE Journal of Solid-State Circuits, vol. 51, iss. 11, pp. 2702-2715, 2016.
    [Bibtex]
    @ARTICLE{7558236, 
    author={M. Bassi and F. Radice and M. Bruccoleri and S. Erba and A. Mazzanti}, 
    journal={IEEE Journal of Solid-State Circuits}, 
    title={A High-Swing 45 Gb/s Hybrid Voltage and Current-Mode PAM-4 Transmitter in 28 nm CMOS FDSOI}, 
    year={2016}, 
    volume={51}, 
    number={11}, 
    pages={2702-2715}, 
    keywords={CMOS integrated circuits;electrostatic discharge;equalisers;pulse amplitude modulation;semiconductor diodes;silicon-on-insulator;transmitters;CMOS;FDSOI;HBM ESD diodes;NRZ;PAM-4 transmitter;bit rate 400 Gbit/s;bit rate 45 Gbit/s;current 120 mA;duty-cycle correction circuit;electrical links;feed-forward equalizer;half-rate serializer;size 28 nm;voltage 1 V;voltage 1.3 V;voltage 2 kV;word length 5 bit;Distortion;Linearity;Modulation;Optical signal processing;Signal to noise ratio;Topology;Transmitters;Feed-forward equalizer;PAM-4;SerDes;transmitter;wireline}, 
    doi={10.1109/JSSC.2016.2598223}, 
    ISSN={0018-9200}, 
    month={Nov},}
  • [DOI] M. Bassi, F. Radice, M. Bruccoleri, S. Erba, and A. Mazzanti, “3.6 A 45Gb/s PAM-4 transmitter delivering 1.3Vppd output swing with 1V supply in 28nm CMOS FDSOI,” in 2016 IEEE International Solid-State Circuits Conference (ISSCC), 2016, pp. 66-67.
    [Bibtex]
    @INPROCEEDINGS{7417909, 
    author={M. Bassi and F. Radice and M. Bruccoleri and S. Erba and A. Mazzanti}, 
    booktitle={2016 IEEE International Solid-State Circuits Conference (ISSCC)}, 
    title={3.6 A 45Gb/s PAM-4 transmitter delivering 1.3Vppd output swing with 1V supply in 28nm CMOS FDSOI}, 
    year={2016}, 
    pages={66-67}, 
    keywords={CMOS integrated circuits;driver circuits;forward error correction;pulse amplitude modulation;silicon-on-insulator;transmitters;white noise;4-tap FIR filter;CEI-56G;CM driver;CMOS FDSOI;FEC schemes;HBM ESD diodes;IEEE P802.3bs standards;PAM-4 signaling;PAM-4 transmitter;SNR;SST drivers;amplitude distortion minimization;bit rate 400 Gbit/s;bit rate 45 Gbit/s;current 120 mA;current-mode drivers;differential peak-to-peak swing;duty-cycle correction;equalization tuning;forward error correction scheme;half-rate serializer;low-loss profiles;next-generation electrical link technology;serial interfaces;size 28 nm;source-series terminated drivers;transmitter output amplitude;voltage 1 V;voltage 1.4 V;voltage 1.5 V;while noise power;CMOS integrated circuits;Current measurement;Distortion measurement;Finite impulse response filters;Linearity;Optical transmitters;Semiconductor device measurement}, 
    doi={10.1109/ISSCC.2016.7417909}, 
    month={Jan},}

2015

  • [DOI] J. Zhao, M. Bassi, A. Mazzanti, and F. Svelto, “A 15 GHz-bandwidth 20dBm PSAT power amplifier with 22% PAE in 65nm CMOS,” in Custom Integrated Circuits Conference (CICC), 2015 IEEE, 2015, pp. 1-4.
    [Bibtex]
    @INPROCEEDINGS{7338363, 
    author={J. Zhao and M. Bassi and A. Mazzanti and F. Svelto}, 
    booktitle={Custom Integrated Circuits Conference (CICC), 2015 IEEE}, 
    title={A 15 GHz-bandwidth 20dBm PSAT power amplifier with 22% PAE in 65nm CMOS}, 
    year={2015}, 
    pages={1-4}, 
    keywords={CMOS integrated circuits;IEEE standards;microwave amplifiers;microwave integrated circuits;power amplifiers;power combiners;CMOS;IEEE820.15;PAE;PSAT power amplifier;Wigig;bandwidth 15 GHz;coupled resonators;frequency 58.5 GHz to 73.5 GHz;gain 30 dB;gain-bandwidth product;power combiners;power splitters;size 65 nm;Bandwidth;Capacitors;Gain;Inductors;Power combiners;Power generation;Resonant frequency}, 
    doi={10.1109/CICC.2015.7338363}, 
    month={Sept},}
  • [DOI] F. Radice, M. Bruccoleri, E. Mammei, M. Bassi, and A. Mazzanti, “A low-noise programmable-gain amplifier for 25 Gb/s multi-mode fiber receivers in 28nm CMOS FDSOI,” in European Solid-State Circuits Conference (ESSCIRC), ESSCIRC 2015 – 41st, 2015, pp. 160-163.
    [Bibtex]
    @INPROCEEDINGS{7313853, 
    author={F. Radice and M. Bruccoleri and E. Mammei and M. Bassi and A. Mazzanti}, 
    booktitle={European Solid-State Circuits Conference (ESSCIRC), ESSCIRC 2015 - 41st}, 
    title={A low-noise programmable-gain amplifier for 25 Gb/s multi-mode fiber receivers in 28nm CMOS FDSOI}, 
    year={2015}, 
    pages={160-163}, 
    keywords={CMOS integrated circuits;integrated optoelectronics;low noise amplifiers;optical fibre communication;optical receivers;wideband amplifiers;CMOS FDSOI;Nyquist frequency;bit rate 25 Gbit/s;finely adjustable amplifier;high gain amplifier;intersymbol interference;low noise programmable gain amplifier;multimode fiber receiver;power 32 mW;size 28 nm;very low noise amplifier;wide bandwidth amplifier;CMOS integrated circuits;Electronics packaging;Gain;Inductors;Noise;Receivers;Shunts (electrical)}, 
    doi={10.1109/ESSCIRC.2015.7313853}, 
    ISSN={1930-8833}, 
    month={Sept},}
  • [DOI] F. Loi, E. Mammei, F. Radice, M. Bruccoleri, S. Erba, M. Bassi, and A. Mazzanti, “A 25-Gb/s FIR equalizer based on highly linear all-pass delay-line stages in 28-nm LP CMOS,” in Radio Frequency Integrated Circuits Symposium (RFIC), 2015 IEEE, 2015, pp. 303-306.
    [Bibtex]
    @INPROCEEDINGS{7337765, 
    author={F. Loi and E. Mammei and F. Radice and M. Bruccoleri and S. Erba and M. Bassi and A. Mazzanti}, 
    booktitle={Radio Frequency Integrated Circuits Symposium (RFIC), 2015 IEEE}, 
    title={A 25-Gb/s FIR equalizer based on highly linear all-pass delay-line stages in 28-nm LP CMOS}, 
    year={2015}, 
    pages={303-306}, 
    keywords={CMOS integrated circuits;FIR filters;all-pass filters;delay lines;equalisers;radio receivers;radiofrequency integrated circuits;4-tap FIR equalizer;BER;FIR filters;LP CMOS;SNR;adaptation techniques;bit rate 25 Gbit/s;channel frequency response;current 25 mA;high speed wireline receivers;input signal amplitude;linear all-pass delay-line stages;loss 20 dB;loss channel;size 28 nm;voltage 1 V;voltage 900 mV;Adders;Bit error rate;CMOS integrated circuits;CMOS technology;CMOS;FIR;adaptive equalizer;all-pass;wireline}, 
    doi={10.1109/RFIC.2015.7337765}, 
    month={May},}
  • [DOI] M. Bassi, J. Zhao, A. Bevilacqua, A. Ghilioni, A. Mazzanti, and F. Svelto, “A 40-67 GHz Power Amplifier With 13 dBm Psat and 16% PAE in 28 nm CMOS LP,” Solid-State Circuits, IEEE Journal of, vol. PP, iss. 99, pp. 1-11, 2015.
    [Bibtex]
    @ARTICLE{7065334, 
      author={Bassi, M. and Zhao, J. and Bevilacqua, A. and Ghilioni, A. and Mazzanti, A. and Svelto, F.}, 
      journal={Solid-State Circuits, IEEE Journal of}, 
      title={A 40-67 GHz Power Amplifier With 13 dBm Psat and 16% PAE in 28 nm CMOS LP}, 
      year={2015}, 
      month={}, 
      volume={PP}, 
      number={99}, 
      pages={1-11}, 
      keywords={Bandwidth;CMOS integrated circuits;Capacitance;Impedance;Inductors;Power amplifiers;Power generation;Broadband amplifiers;CMOS integrated circuits;coupled resonators;gain-bandwidth product;millimeter wave integrated circuits;power amplifiers;resonator filters}, 
      doi={10.1109/JSSC.2015.2409295}, 
      ISSN={0018-9200}
    }
  • [DOI] M. Caruso, M. Bassi, A. Bevilacqua, and A. Neviani, “A 2-16 GHz 65 nm CMOS Stepped-Frequency Radar Transmitter With Harmonic Rejection for High-Resolution Medical Imaging Applications,” Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 62, iss. 2, pp. 413-422, 2015.
    [Bibtex]
    @ARTICLE{2015Caruso,
      author = {Caruso, M. and Bassi, M. and Bevilacqua, A. and Neviani, A.},
      title = {A 2-16 GHz 65 nm CMOS Stepped-Frequency Radar Transmitter With Harmonic
      Rejection for High-Resolution Medical Imaging Applications},
      journal = {Circuits and Systems I: Regular Papers, IEEE Transactions on},
      year = {2015},
      volume = {62},
      pages = {413-422},
      number = {2},
      month = {Feb},
      doi = {10.1109/TCSI.2014.2362332},
      issn = {1549-8328},
      keywords = {CMOS integrated circuits;image resolution;jitter;medical image processing;oscillators;phase
      locked loops;radar imaging;radar receivers;radar transmitters;CMOS
      stepped-frequency radar transmitter;PLL;RMS jitter;frequency 2 GHz
      to 16 GHz;frequency 6.5 GHz to 18.4 GHz;harmonic rejection;harmonic
      rejection buffer;high-resolution medical imaging;inductorless injection-locked
      programmable divider;phase coherence;phase noise;quadrature downconversion;radar
      operation;receiver path;size 65 nm;stepped-frequency continuous wave
      short-range medical radar;Frequency conversion;Harmonic analysis;Phase
      locked loops;Radar imaging;Receivers;Transmitters;CMOS;UWB transmitter;frequency
      divider;frequency division;harmonic rejection;radar imaging;stepped
      frequency continuous wave (SFCW)},
      timestamp = {2015.03.04}
    }

2014

  • [DOI] E. Mammei, F. Loi, F. Radice, A. Dati, M. Bruccoleri, M. Bassi, and A. Mazzanti, “8.3 A power-scalable 7-tap FIR equalizer with tunable active delay line for 10-to-25Gb/s multi-mode fiber EDC in 28nm LP-CMOS,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International, 2014, pp. 142-143.
    [Bibtex]
    @INPROCEEDINGS{2014Mammei,
      author = {Mammei, E. and Loi, F. and Radice, F. and Dati, A. and Bruccoleri,
      M. and Bassi, M. and Mazzanti, A.},
      title = {8.3 A power-scalable 7-tap FIR equalizer with tunable active delay
      line for 10-to-25Gb/s multi-mode fiber EDC in 28nm LP-CMOS},
      booktitle = {Solid-State Circuits Conference Digest of Technical Papers (ISSCC),
      2014 IEEE International},
      year = {2014},
      pages = {142-143},
      month = {Feb},
      doi = {10.1109/ISSCC.2014.6757373},
      issn = {0193-6530},
      keywords = {CMOS integrated circuits;FIR filters;equalisers;integrated optoelectronics;local
      area networks;low-power electronics;optical delay lines;optical fibre
      dispersion;optical pulse shaping;space division multiplexing;10GBASE-LRM
      standard;FIR filter;LAN;MMF;active delay line;bit rate 10 Gbit/s
      to 25 Gbit/s;channel response;electronic dispersion compensation;local
      area networks;low power CMOS;modal dispersion;multimode fiber EDC;nonlinear
      equalizer;power scalable 7-tap FIR equalizer;pulse shaping;signal
      processing;size 28 nm;space division multiplexing;CMOS integrated
      circuits;Delay lines;Equalizers;Finite impulse response filters;Optical
      fiber LAN;Optical fiber dispersion;Solid state circuits},
      timestamp = {2015.03.04}
    }
  • [DOI] E. Mammei, F. Loi, F. Radice, A. Dati, M. Bruccoleri, M. Bassi, and A. Mazzanti, “Analysis and Design of a Power-Scalable Continuous-Time FIR Equalizer for 10 Gb/s to 25 Gb/s Multi-Mode Fiber EDC in 28 nm LP CMOS,” Solid-State Circuits, IEEE Journal of, vol. 49, iss. 12, pp. 3130-3140, 2014.
    [Bibtex]
    @ARTICLE{2014Mammeia,
      author = {Mammei, E. and Loi, F. and Radice, F. and Dati, A. and Bruccoleri,
      M. and Bassi, M. and Mazzanti, A.},
      title = {Analysis and Design of a Power-Scalable Continuous-Time FIR Equalizer
      for 10 Gb/s to 25 Gb/s Multi-Mode Fiber EDC in 28 nm LP CMOS},
      journal = {Solid-State Circuits, IEEE Journal of},
      year = {2014},
      volume = {49},
      pages = {3130-3140},
      number = {12},
      month = {Dec},
      doi = {10.1109/JSSC.2014.2345770},
      issn = {0018-9200},
      keywords = {CMOS integrated circuits;FIR filters;compensation;continuous time
      filters;equalisers;integrated optoelectronics;operational amplifiers;optical
      delay lines;optical fibre amplifiers;optical fibre dispersion;optical
      fibre filters;LP CMOS technology;active delay line elements;bit rate
      10 Gbit/s to 25 Gbit/s;bit rate 400 Gbit/s;circuit topology;dispersion
      compensation;filter tap coefficients;input data-rate variation;input
      data-rates;multimode fiber EDC;multimode fiber links;power 55 mW
      to 90 mW;power efficiency;power-scalable continuous-time 7-tap FIR
      equalizer;programmable transconductors;size 28 nm;test chips;transimpedance
      amplifier;ultra-compact equalizer;CMOS integrated circuits;Delay
      lines;Delays;Equalizers;Finite impulse response filters;Gain;Noise;28
      nm CMOS;FIR equalizer;all-pass;delay line;electronic dispersion compensation;multi-mode
      fiber},
      timestamp = {2015.03.04}
    }
  • [DOI] J. Zhao, M. Bassi, A. Bevilacqua, A. Ghilioni, A. Mazzanti, and F. Svelto, “A 40-67GHz power amplifier with 13dBm PSAT and 16% PAE in 28 nm CMOS LP,” in European Solid State Circuits Conference (ESSCIRC), ESSCIRC 2014 – 40th, 2014, pp. 179-182.
    [Bibtex]
    @INPROCEEDINGS{2014Zhao,
      author = {Junlei Zhao and Bassi, M. and Bevilacqua, A. and Ghilioni, A. and
      Mazzanti, A. and Svelto, F.},
      title = {A 40-67GHz power amplifier with 13dBm PSAT and 16% PAE in 28 nm CMOS
      LP},
      booktitle = {European Solid State Circuits Conference (ESSCIRC), ESSCIRC 2014
      - 40th},
      year = {2014},
      pages = {179-182},
      month = {Sept},
      doi = {10.1109/ESSCIRC.2014.6942051},
      issn = {1930-8833},
      keywords = {CMOS analogue integrated circuits;differential amplifiers;field effect
      MIMIC;impedance matching;low-power electronics;millimetre wave power
      amplifiers;millimetre wave resonators;wideband amplifiers;CMOS LP;Norton
      transformations;PAE;PSAT;efficiency 16 percent;frequency 40 GHz to
      67 GHz;impedance matching;low-power devices;mm-wave PAs;neutralized
      common source stages;output matching networks;size 28 nm;two-stage
      differential PA;wideband inductively coupled resonators;wideband
      power amplifiers;wireless applications;Bandwidth;CMOS integrated
      circuits;Gain;Impedance;Impedance matching;Inductors;Power generation},
      timestamp = {2015.03.04}
    }

2013

  • [DOI] M. Bassi, M. Caruso, A. Bevilacqua, and A. Neviani, “A 65-nm CMOS 1.75-15 GHz Stepped Frequency Radar Receiver for Early Diagnosis of Breast Cancer,” Solid-State Circuits, IEEE Journal of, vol. 48, iss. 7, pp. 1741-1750, 2013.
    [Bibtex]
    @ARTICLE{2013Bassi,
      author = {Bassi, M. and Caruso, M. and Bevilacqua, A. and Neviani, A.},
      title = {A 65-nm CMOS 1.75-15 GHz Stepped Frequency Radar Receiver for Early
      Diagnosis of Breast Cancer},
      journal = {Solid-State Circuits, IEEE Journal of},
      year = {2013},
      volume = {48},
      pages = {1741-1750},
      number = {7},
      month = {July},
      doi = {10.1109/JSSC.2013.2253234},
      issn = {0018-9200},
      keywords = {CMOS integrated circuits;biological organs;cancer;flicker noise;microwave
      imaging;radar receivers;CMOS;I-Q phase error;breast cancer diagnostic
      imaging;flicker noise corner;frequency 1.75 GHz to 15 GHz;microwave
      radar imaging;programmable injection-locked divider;quadrature LO
      signals;stepped frequency radar receiver;Bandwidth;Breast;CMOS integrated
      circuits;Mixers;Noise;Radar;Receivers;CMOS;UWB receiver;radar imaging},
      timestamp = {2015.03.04}
    }
  • [DOI] M. Bassi, M. Caruso, M. S. Khan, A. Bevilacqua, A. Capobianco, and A. Neviani, “An Integrated Microwave Imaging Radar With Planar Antennas for Breast Cancer Detection,” Microwave Theory and Techniques, IEEE Transactions on, vol. 61, iss. 5, pp. 2108-2118, 2013.
    [Bibtex]
    @ARTICLE{2013Bassia,
      author = {Bassi, M. and Caruso, M. and Khan, M.S. and Bevilacqua, A. and Capobianco,
      A. and Neviani, A.},
      title = {An Integrated Microwave Imaging Radar With Planar Antennas for Breast
      Cancer Detection},
      journal = {Microwave Theory and Techniques, IEEE Transactions on},
      year = {2013},
      volume = {61},
      pages = {2108-2118},
      number = {5},
      month = {May},
      doi = {10.1109/TMTT.2013.2247052},
      issn = {0018-9480},
      keywords = {CMOS integrated circuits;biological organs;biomedical electronics;biomedical
      equipment;biomedical imaging;cancer;microstrip antennas;microwave
      imaging;phantoms;planar antenna arrays;radar imaging;tumours;CMOS
      technology;breast cancer diagnostic screening;frequency 2 GHz to
      16 GHz;frequency range;imaging experiments;integrated circuit;integrated
      microwave imaging radar;patch antennas;planar antennas;planar laminate;realistic
      breast phantom;size 67 nm;tumor target detection;Imaging;Radar antennas;Radar
      imaging;Receivers;Transceivers;Tumors;Biomedical image processing;CMOS
      integrated circuits;RF integrated circuits;cancer detection;radar
      imaging},
      timestamp = {2015.03.04}
    }
  • [DOI] M. Caruso, M. Bassi, A. Bevilacqua, and A. Neviani, “Wideband 2-16GHz local oscillator generation for short-range radar applications,” in ESSCIRC (ESSCIRC), 2013 Proceedings of the, 2013, pp. 49-52.
    [Bibtex]
    @INPROCEEDINGS{2013Caruso,
      author = {Caruso, M. and Bassi, M. and Bevilacqua, A. and Neviani, A.},
      title = {Wideband 2-16GHz local oscillator generation for short-range radar
      applications},
      booktitle = {ESSCIRC (ESSCIRC), 2013 Proceedings of the},
      year = {2013},
      pages = {49-52},
      month = {Sept},
      doi = {10.1109/ESSCIRC.2013.6649069},
      issn = {1930-8833},
      keywords = {CMOS integrated circuits;UHF oscillators;field effect MMIC;frequency
      dividers;jitter;microwave oscillators;radar;CMOS LO generation system;PLL;RMS
      jitter;frequency 2 GHz to 18.4 GHz;injection-locked programmable
      divider;phase noise;quadrature signals;short-range radar applications;size
      65 nm;time 2 mus;wideband local oscillator generation;Frequency conversion;Frequency
      measurement;Phase locked loops;Phase noise;Ring oscillators;Tuning;Wideband},
      timestamp = {2015.03.04}
    }
  • [DOI] M. Caruso, M. Bassi, A. Bevilacqua, and A. Neviani, “A 2-to-16GHz 204mW 3mm-resolution stepped-frequency radar for breast-cancer diagnostic imaging in 65nm CMOS,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International, 2013, pp. 240-241.
    [Bibtex]
    @INPROCEEDINGS{2013Carusoa,
      author = {Caruso, M. and Bassi, M. and Bevilacqua, A. and Neviani, A.},
      title = {A 2-to-16GHz 204mW 3mm-resolution stepped-frequency radar for breast-cancer
      diagnostic imaging in 65nm CMOS},
      booktitle = {Solid-State Circuits Conference Digest of Technical Papers (ISSCC),
      2013 IEEE International},
      year = {2013},
      pages = {240-241},
      month = {Feb},
      doi = {10.1109/ISSCC.2013.6487717},
      issn = {0193-6530},
      keywords = {CMOS analogue integrated circuits;antenna arrays;cancer;image resolution;medical
      image processing;millimetre wave radar;radar antennas;radar imaging;ultra
      wideband radar;VNA;antenna array arrangement;breast cancer diagnostic
      imaging;early-stage breast cancer detection;electrical properties;frequency
      2 GHz to 16 GHz;industrial application;medical application;medical
      radar imaging;mm-range resolution;mm-waves;power 204 mW;scattered
      energy;security application;silicon technologies;size 65 nm;stepped-frequency
      radar;tumor cells;ultrawideband radars;Harmonic analysis;Imaging;Mixers;Noise
      measurement;Power harmonic filters;Radar imaging},
      timestamp = {2015.03.04}
    }

2012

  • [DOI] M. Bassi, A. Bevilacqua, A. Gerosa, and A. Neviani, “Integrated SFCW Transceivers for UWB Breast Cancer Imaging: Architectures and Circuit Constraints,” Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 59, iss. 6, pp. 1228-1241, 2012.
    [Bibtex]
    @ARTICLE{2012Bassi,
      author = {Bassi, M. and Bevilacqua, A. and Gerosa, A. and Neviani, A.},
      title = {Integrated SFCW Transceivers for UWB Breast Cancer Imaging: Architectures
      and Circuit Constraints},
      journal = {Circuits and Systems I: Regular Papers, IEEE Transactions on},
      year = {2012},
      volume = {59},
      pages = {1228-1241},
      number = {6},
      month = {June},
      doi = {10.1109/TCSI.2011.2173400},
      issn = {1549-8328},
      keywords = {CW radar;biomedical imaging;mammography;microwave imaging;radar imaging;ultra
      wideband radar;FDTD simulation;SFCW radar system;UWB breast cancer
      imaging;architecture constraint;circuit constraint;critical circuit
      impairment;direct conversion architecture;integrated SFCW transceiver;local
      oscillator;numerical breast phantom;stepped frequency continuous
      wave radar;super heterodyne architecture;transceiver architectures;Antenna
      arrays;Arrays;Breast;Receivers;Transceivers;Tumors;Breast cancer
      detection;CMOS;UWB;direct conversion;super heterodyne},
      timestamp = {2015.03.04}
    }
  • [DOI] M. Bassi, M. Caruso, A. Bevilacqua, and A. Neviani, “A 1.75-15 GHz stepped frequency receiver for breast cancer imaging in 65 nm CMOS,” in ESSCIRC (ESSCIRC), 2012 Proceedings of the, 2012, pp. 353-356.
    [Bibtex]
    @INPROCEEDINGS{2012Bassia,
      author = {Bassi, M. and Caruso, M. and Bevilacqua, A. and Neviani, A.},
      title = {A 1.75-15 GHz stepped frequency receiver for breast cancer imaging
      in 65 nm CMOS},
      booktitle = {ESSCIRC (ESSCIRC), 2012 Proceedings of the},
      year = {2012},
      pages = {353-356},
      month = {Sept},
      doi = {10.1109/ESSCIRC.2012.6341327},
      issn = {1930-8833},
      keywords = {CMOS integrated circuits;biomedical imaging;cancer;flicker noise;frequency
      dividers;microwave imaging;microwave receivers;CMOS;I-Q phase error;UWB
      microwave imaging;breast cancer diagnostic imaging;flicker noise
      corner;frequency 1.75 GHz to 15 GHz;frequency receiver;noise figure
      106 dB;programmable injection-locked divider;quadrature LO signal;size
      65 nm;Bandwidth;Breast cancer;Imaging;Mixers;Noise;Noise measurement;Receivers},
      timestamp = {2015.03.04}
    }

2011

  • [DOI] M. Bassi, A. Bevilacqua, A. Gerosa, and A. Neviani, “Integrated transceivers for UWB breast cancer imaging: Architecture and circuit constraints,” in Circuits and Systems (ISCAS), 2011 IEEE International Symposium on, 2011, pp. 2087-2090.
    [Bibtex]
    @INPROCEEDINGS{2011Bassi,
      author = {Bassi, M. and Bevilacqua, A. and Gerosa, A. and Neviani, A.},
      title = {Integrated transceivers for UWB breast cancer imaging: Architecture
      and circuit constraints},
      booktitle = {Circuits and Systems (ISCAS), 2011 IEEE International Symposium on},
      year = {2011},
      pages = {2087-2090},
      month = {May},
      doi = {10.1109/ISCAS.2011.5938009},
      issn = {0271-4302},
      keywords = {cancer;finite difference time-domain analysis;heterodyne detection;microwave
      imaging;phantoms;transceivers;ultra wideband radar;FDTD simulations
      data;RX local oscillators;SFCW radar system;TX local oscillators;UWB
      breast cancer imaging;architecture constraints;behavioral analysis;circuit
      constraints;direct conversion;integrated transceivers;mathematical
      model;numerical breast phantom;random phase mismatches;super heterodyne
      architectures;Antenna arrays;Breast;Delta modulation;Receivers;Skin;Tumors},
      timestamp = {2015.03.04}
    }