A Millimeter Wave Quadrature VCO Based on Magnetically Coupled Resonators

Ugo Decanis, Andrea Ghilioni, Enrico Monaco1,2, Andrea Mazzanti, Francesco Svelto

Università degli Studi di Pavia
(1) Istituto Universitario di Studi Superiori di Pavia
(2) Università degli Studi di Modena e Reggio Emilia
60GHz QVCO

- **Wireless Applications:**
 - Enable direct conversion receiver architectures
 - Provide phase rotators drivers in phased-arrays system

- **Wire-line Applications:**
 - Clock recovery
Outline

• Limits of classical transistor coupled QVCOs at mm-waves
• Ring of VCOs with passive coupling
• Design of a QVCO based on magnetic inter-stages
• Experiments
• Conclusions
Classical Transistor Coupled VCOs

$$f_0 = \frac{1}{2\pi\sqrt{LC}} \left(1 \pm \frac{1}{2Q} \frac{I_q}{I_i} \right)$$

f_0 depends on I_q and I_i

Amplitude noise in I_q and I_i directly translates into oscillator phase noise.
Ring Oscillator with Passive Coupling

If the trans-impedance \(Z(\omega) \) is a filter of order higher than two, 90° shift can be provided by passive components only.

Improved phase noise performances
Passive Coupled Parallel Resonators

- Optimum kQ value exists (0.75)
- For a typical Q of 5, k is 0.15
Phase Noise Comparison

• Oscillators drawing 22 mA, employing LC tank with Q of 5
• No varactor included
• 2 decades 1/f noise improvement vs transistor coupled
Coupled Resonators Design

CAPACITIVE COUPLING
- Four inductors are needed

MAGNETIC COUPLING
- Area reduced by a factor of 2
- Simplified Signal routing
Low-k Transformer

Shield produces reduction of:
- equivalent coupling k_{eq}
- L_{ext}
- Q of L_{ext}
QVCO Schematic

- A-MOS varactors for tuning
- No active biasing device for minimum 1/f noise
- Rcm to prevent common mode oscillations
Chip Micrograph

Technology: 65nm CMOS

Power Consumption: 22mW

Core Area: 0.075mm²

Supply Voltage: 1V

Test Chip fabricated by STMicroelectronics
Chip Micrograph

Technology:
65nm CMOS

Power Consumption:
22mW

Core Area:
0.075mm²

Supply Voltage:
1V

Test Chip fabricated by STMicroelectronics
Measurements

- Buffer H Mixer L: Testing @ 60GHz
- Buffer L Mixer H: Down-conversion

Reconfigurable Gilbert cell

IEEE International Solid-State Circuits Conference © 2011 IEEE
Phase Noise

Corner Frequency: < 1MHz

-117 dBc/Hz
Phase Accuracy

Frequency: 200MHz

Phase Error < 1.5° Amplitude Mismatch < 1dB
State of the art mm-W QVCOs

<table>
<thead>
<tr>
<th>Ref</th>
<th>Process</th>
<th>Frequency (GHz)</th>
<th>T.R. (GHz)</th>
<th>P.N. @ 1MHz (dBc/Hz)</th>
<th>FOM (dBc/Hz)</th>
<th>Phase Error</th>
<th>Area (mm²)</th>
<th>Power (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scheir JSSC Dec. 2008</td>
<td>Laskin TMTT Dec. 2009</td>
<td>Scheir ISSCC 2009</td>
<td>This work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90nm CMOS</td>
<td>65nm CMOS</td>
<td>45nm CMOS</td>
<td>65nm CMOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>90nm CMOS</td>
<td>93.1</td>
<td>4</td>
<td>-85</td>
<td>-165</td>
<td>n.a.</td>
<td>n.a.</td>
<td>22</td>
</tr>
<tr>
<td>Frequency (GHz)</td>
<td>48</td>
<td>93.1</td>
<td>61.6</td>
<td>58.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T.R. (GHz)</td>
<td>8</td>
<td>4</td>
<td>9</td>
<td>4.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.N. @ 1MHz (dBc/Hz)</td>
<td>-85</td>
<td>-90</td>
<td>-75</td>
<td>-95 / -97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOM (dBc/Hz)</td>
<td>-165</td>
<td>-172.7</td>
<td>-156</td>
<td>-177 / -179</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Error</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>< 1.5°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area (mm²)</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0.075</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power (mW)</td>
<td>22.7</td>
<td>43.2</td>
<td>28</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

• A new circuit topology of quadrature VCO, based on magnetically coupled resonators has been presented

• A low-k transformer has been realized to implement the coupled resonators and optimize the oscillator area

• Very good performances in terms of phase noise and phase accuracy have been demonstrated

• The realized VCO lends itself to be used in direct conversion receivers or to implement phased array solutions