A 4.8mW Inductorless CMOS Frequency Divider-by-4 with more than 60% Fractional Bandwidth up to 70GHz

Andrea Ghilioni, Ugo Decanis, Andrea Mazzanti and Francesco Svelto
Outline

• Motivation

• Static versus dynamic CML latch

• Proposed differentially-driven dynamic CML latch

• Divider-by-4 based on proposed latches

• Experiments

• Conclusions
Injection-Locked Dividers for mm-Wave PLLs

- Limited power consumption
- Limited tunability and large inductor area

but
CML Static Dividers for mm-Wave PLLs

- Wide locking-range and small area
- Large power consumption and limited f_{MAX} in CMOS

Ref -> PFD -> LPF -> $\div N$ -> mm-Wave prescaler

standard logic digital divider

$\div M$
Outline

• Motivation

• Static versus dynamic CML latch

• Proposed differentially-driven dynamic CML latch

• Divider-by-4 based on proposed latches

• Experiments

• Conclusions
Initial condition at time t_0
- Input is High ($D > D_n$)
- Output is Low ($Q < Q_n$)
- E switches from 0 to 1

$V_{out} = Q - Q_n$
Differential Pair as Dynamic CML Latch

The output state is momentarily stored on the load parasitic capacitance

\[V_{\text{out}} = Q - Qn \]
Insight Into Dynamic Behavior: Read Phase

Small load resistance desirable to speed-up sensing phase

\[m_1 = \frac{\Delta V}{RC} = \frac{I}{C} \quad m_2 = -\frac{\Delta V}{RC} = -\frac{I}{C} \quad \tau = RC \]
Insight Into Dynamic Behavior: Hold Phase

Large load resistance desirable to extend hold phase.

\[m_1 = \frac{V_{DD} - V_Q(t_1)}{RC} \]
\[m_2 = \frac{V_{DD} - V_{Qn}(t_1)}{RC} \]
\[\tau = RC \]
Outline

• Motivation

• Static versus dynamic CML latch

• Proposed differentially-driven dynamic CML latch

• Divider-by-4 based on proposed latches

• Experiments

• Conclusions
Proposed Differentially-Driven Latch (1)

Dynamically-modulated load resistance:
Small R and high current for faster read phase

SD = Singly-Driven

$V_{out} = Q - Q_n$
Dynamically-modulated load resistance: Large R for longer hold phase

Proposed Differentially-Driven Latch (2)
Outline

- Motivation
- Static versus dynamic CML latch
- Proposed differentially-driven dynamic CML latch
- Divider-by-4 based on proposed latches
- Experiments
- Conclusions
Dynamic Divider-by-4 Comparison: DD vs SD

Differentially-Driven Latches (DD)

Singly-Driven Latches (SD) *

*Presented at ISSCC 2011
Simulated Waveforms Close to SD f_{MIN}

Singly-Driven latch is almost completely discharged during the critical hold phase
Simulated Waveforms Close to SD f_{MAX}

Singly-Driven latch inverts the state just before the conclusion of the critical read phase.
Design trade-off: Locking-Range vs f_0

- All $L = 30\text{nm}$
- $P_{\text{diss}} \approx 2\text{mW}$
- $A_{\text{inSE}} = 250\text{mV}$
- Sinusoidal IN
Detailed Latch Design

Transistors’ size:

- N_0: $W = 8 \times 1\mu m$
- N_1: $W = 6 \times 1\mu m$
- P_1: $W = 4 \times 1\mu m$

All $L = 30$nm
Outline

• Motivation
• Static versus dynamic CML latch
• Proposed differentially-driven dynamic CML latch
• Divider-by-4 based on proposed latches
• Experiments
• Conclusions
Technology:

32 nm LP
bulk CMOS
1V Supply
10 Cu layers

Realized by STMicroelectronics
Measured vs Simulated Sensitivity Curves
Measured Self-Oscillation Freq and P_{DISS}

- Self-oscillation freq (GHz)
- ΔV_{SG} pmos (mV)
- Power consumption (mW)
Comparison with the State of the Art

<table>
<thead>
<tr>
<th>Ref</th>
<th>div ratio</th>
<th>f_{MIN}-f_{MAX} (GHz)</th>
<th>L.R. (%)</th>
<th>P_{DISS} (mW)</th>
<th>Area (μm2)</th>
<th>CMOS (nm)</th>
<th>FoM</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>3</td>
<td>58.6-67.2</td>
<td>14</td>
<td>5.2</td>
<td>37.4k</td>
<td>65</td>
<td>177</td>
</tr>
<tr>
<td>[2]</td>
<td>3</td>
<td>48.8-54.6</td>
<td>3.5</td>
<td>3.0</td>
<td>90.0k</td>
<td>65</td>
<td>64</td>
</tr>
<tr>
<td>[3]</td>
<td>4</td>
<td>79.7-81.6</td>
<td>2.4</td>
<td>12</td>
<td>35.0k</td>
<td>65</td>
<td>16</td>
</tr>
<tr>
<td>[4]</td>
<td>4</td>
<td>62.9-71.6</td>
<td>3.2</td>
<td>2.8</td>
<td>14.3k</td>
<td>90</td>
<td>82</td>
</tr>
<tr>
<td>[5]</td>
<td>4</td>
<td>82.5-89.0</td>
<td>7.6</td>
<td>3.0</td>
<td>63.8k</td>
<td>90</td>
<td>225</td>
</tr>
<tr>
<td>[6]</td>
<td>4</td>
<td>67.0-72.4</td>
<td>7.7</td>
<td>16</td>
<td>661k</td>
<td>90</td>
<td>34</td>
</tr>
<tr>
<td>This work</td>
<td>4</td>
<td>14 – ≥ 70</td>
<td>≥ 60</td>
<td>≤ 4.8</td>
<td>990</td>
<td>32</td>
<td>≥ 875</td>
</tr>
</tbody>
</table>

$\text{FoM} = \text{L.R.} \times f_{\text{MAX}} / P_{\text{DISS}}$ (GHz/mW)

Conclusions

• Modulation of load resistance in dynamic CML latch improves L.R. up to 200%

• Up to 90% Locking Range in sub-bands for 0dBm input power

• Extremely wide tunability: input can span from 14 to 108GHz

• Low power consumption: 4.8mW @ 70GHz f_{IN}

• Core area only 18 x 55 μm2