A 33.6-46.2GHz 32nm CMOS VCO with 177.5dBc/Hz minimum noise FoM using inductor splitting for tuning extension

E. Mammei, E. Monaco*, A. Mazzanti, F. Svelto

Università degli Studi di Pavia, Pavia, Italy

* STMicroelectronics, Pavia, Italy

International Solid State Circuits Conference, ISSCC 2013
Mm-wave VCOs - issues

- Tuning Range reduces dramatically
- Wide Tuning Range leads to poor phase noise FoM
- State of the art FoM and wide tuning range is challenging
Review of switched capacitor tuning

- C_{FIX}: parasitic cap of buffer and core devices
- C_{FIX} equal or greater than C_T at mmWave

- SW ON: $f_{\text{MIN}} = \frac{1}{2\pi \sqrt{L_T (C_{\text{FIX}} + C_T)}}$

- SW OFF: f_{MAX} determined by C_{FIX}

\[
f_{\text{MAX}} = \frac{1}{2\pi \sqrt{L_T \left(C_{\text{FIX}} + \frac{C_T C_{\text{SW}}}{C_T + C_{\text{SW}}} \right)}} \quad \text{for} \quad C_{\text{SW}} \ll C_T, C_{\text{FIX}}
\]

\[
\rightarrow \frac{1}{2\pi \sqrt{L_T C_{\text{FIX}}}}
\]
Proposed switched capacitor tuning

- \(c_{SW} \) in series with \(C_T + C_{FIX} \)
- Much higher frequency jump

\[f_{\text{MAX}} = \frac{1}{2\pi \sqrt{L_T \frac{(C_T + C_{FIX})c_{SW}}{C_T + C_{FIX} + c_{SW}}}} \]

\(c_{SW} \ll C_T, C_{FIX} \)

\[\rightarrow \frac{1}{2\pi \sqrt{L_T c_{SW}}} \]

- SW ON: \(f_{\text{MIN}} \) as in switched cap. oscillator
- SW OFF: \(C_{FIX} \) no more limiting

Mammei et al., ISSCC 2013
Comparison with same frequency jump

Assuming: $C_{\text{FIX}} = C_T = 100\, \text{fF}$, $L_T = 100\, \text{pH}$, $\text{FOM}_{SW} = 550\, \text{fs}$

$f_{\text{MIN}} = 35.6\, \text{GHz}$, $f_{\text{MAX}} / f_{\text{MIN}} = 1.2$

Switch off

- $W_{\text{sw}} = 41\, \mu\text{m}$, $c_{SW} = 50\, \text{fF}$
 - $r_{SW} = 11\, \Omega$, $Q = 8$

- $W_{\text{sw}} = 330\, \mu\text{m}$, $c_{SW} = 400\, \text{fF}$
 - $r_{SW} = 1.37\, \Omega$, $Q = 16$

Switch on
Q vs $f_{\text{max}}/f_{\text{min}}$ with finite components Q

Advantage increase for higher frequency step and/or larger C_{fix}
- Inductor splitting with M_{SW} for the largest tuning step
- Variable tank capacitance (C_T) with switched digital MOMs and varactor
- $L_T=100\,\mu\text{H}, C_T=140\,\text{fF}, C_{\text{FIX}}\approx120\,\text{fF}$
- Tank Q ranges from 4 to 5.5
- Transformer feedback avoids latching when M_{SW} is off
- R_b instead of current mirrors lowers 1/f noise
Test Chip

- CMOS 32nm LP from STMicroelectronics
- Core Area 70um x 120um
- 40GHz center frequency

- Phase Noise measured after divider by 4 in X-Band (8-12GHz)
- 9.8mW from 1V supply
Phase Noise & FoM over Tuning Range

![Graph showing Phase Noise and FoM over Frequency range with M_sw ON and M_sw OFF at 10 MHz offset.](image)
Summary and Comparison

<table>
<thead>
<tr>
<th>REF</th>
<th>FREQ [GHz]</th>
<th>TR [%]</th>
<th>POWER [mW]</th>
<th>PN @10MHz [dBc/Hz]</th>
<th>FOM [dBc/Hz]</th>
<th>TECH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICC12</td>
<td>57.5/90.1</td>
<td>44.2</td>
<td>8.4/10.8</td>
<td>-104.6/-112.2</td>
<td>172/180</td>
<td>65nm</td>
</tr>
<tr>
<td>RFIC11</td>
<td>11.5/22</td>
<td>59</td>
<td>20/29</td>
<td>-107/-127*</td>
<td>158.6/177.4</td>
<td>130nm</td>
</tr>
<tr>
<td>RFIC10</td>
<td>34.3/39.9</td>
<td>15</td>
<td>14.4</td>
<td>-118/-121*</td>
<td>178.4/180.1</td>
<td>65nm</td>
</tr>
<tr>
<td>JSSCC11</td>
<td>43.2/51.8</td>
<td>22.9</td>
<td>16</td>
<td>-117/-119*</td>
<td>179/180</td>
<td>65nm</td>
</tr>
<tr>
<td>ISSCC11</td>
<td>21.7/27.8</td>
<td>24.8</td>
<td>12.2</td>
<td>-121</td>
<td>177.5</td>
<td>45nm</td>
</tr>
<tr>
<td>This Work</td>
<td>33.6/46.2</td>
<td>31.6</td>
<td>9.8</td>
<td>-115.2/-118</td>
<td>177.5/180</td>
<td>32nm</td>
</tr>
</tbody>
</table>

estimated from the reported phase noise at 1MHz
Outline

- VCO Design in ultra scaled technology
- Analysis of the proposed resonator
- Test chips design and experimental results
- Conclusions
CMOS Technology Evolution

- Continuous scaling driven by complex Systems on Chip
- ~20-30% f_T improvement only per generation
- mmWave passive components penalty due to BEOL scaling
CMOS 65nm vs 32nm: BEOL

- 32nm H.L.M closer to substrate (~85%) but same thickness
- 32nm L.L.M. closer to substrate and thinner (~50%)
- 2 time resistivity of 32nm VIAs
Performance of MOS Switches

- Trade-off between c_{sw} and r_{sw}
- FOM_{sw} measures quality of the switch:

 $$FOM_{sw} = C_{OFF} \cdot R_{ON} \propto \frac{1}{f_T}$$

$$r_{sw} \propto \frac{1}{g_m}$$

$$c_{sw} \propto C_{GS}$$
• Routing parasitics comparable to r_{SW} and c_{SW}

• FOM tends to saturate in ultra scaled technologies
Inductors usually realized with top metals for maximum Q and self Resonance frequency

Slightly lower dielectric constant in 32nm compensates lower metal distance to substrate in 32nm
CMOS 65nm vs 32nm: MOM Capacitors

MOM capacitors realized with low level metals for max. density

MOM Q in 32nm ~70% than 65nm due to half thickness of LLM and 2x via resistance
Evidenziate con una caption qual è la misura e quale la simulazione

Frank; 19/01/2013
Switched Capacitor Tank

- Transistors Switch FOM, saturating in ultra scaled technologies, determines the trade off between Tuning Range and Q
- Significant MOM loss (R_{MOM}) due to higher metals and vias resistivity
- Switched cap. tank does not benefit from technology scaling

$$Q_{low} = \frac{2}{\omega C_{MOM}(2R_{MOM} + r_{SW})}$$

$$\frac{C_{MAX}}{C_{MIN}} = \frac{C_{MOM}}{2c_{SW}} + 1$$
Q versus $C_{\text{MAX}}/C_{\text{MIN}}$

32nm switched MOM slightly worse than 65nm

![Graph showing Q versus $C_{\text{MAX}}/C_{\text{MIN}}$ with lines for CMOS65nm and CMOS32nm at 40GHz.](image)
Outline

- VCO Design in ultra scaled technology
- Analysis of the proposed resonator
- Test chips design and experimental results
- Conclusions
Switched Cap. Oscillator

- C_{FIX}: buffer parasitic and core devices
- C_{FIX} equal or greater than C_T at mmW

SW ON

$$f_{MIN} = \frac{1}{2\pi \sqrt{L_T (C_{FIX} + C_T)}}$$

SW OFF: f_{MAX} determined by C_{FIX}

$$f_{MAX} = \frac{1}{2\pi \sqrt{L_T \left(C_{FIX} + \frac{C_T C_{SW}}{C_T + C_{SW}} \right)}} \rightarrow \frac{1}{2\pi \sqrt{L_T C_{FIX}}},$$
Proposed Oscillator

\[f_{\text{MAX}} = \frac{1}{2\pi \sqrt{L_T \left(\frac{(C_T + C_{\text{FIX}})c_{\text{SW}}}{C_T + C_{\text{FIX}} + c_{\text{SW}}} \right)}} \]

- \(c_{\text{SW}} \) in series with \(C_T + C_{\text{FIX}} \)
- Higher frequency jump

- SW.ON: \(f_{\text{MIN}} \) as in switched cap. oscillator

- SW.OFF: \(C_{\text{FIX}} \) no more limiting \(f_{\text{MAX}} \)
Comparison for the Same Frequency Jump

Assuming: \(C_{\text{FIX}} = C_T = 100\text{fF}, \ L_T = 100\text{pH}, \ \text{FOM}_{\text{SW}} = 550\text{fs} \)
\(f_{\text{MIN}} = 35.6\text{GHz}, \ f_{\text{MAX}}/f_{\text{MIN}} = 1.2 \)

\[c_{\text{SW}} = 50\text{fF} \]
\[c_{\text{SW}} = 400\text{fF} \]

For the same frequency step, switch in the proposed tank may display much larger \(c_{\text{SW}} \)
Comparison for the Same Frequency Jump

Assuming: \(C_{\text{FIX}}=C_T=100\,\text{fF}, \; L_T=100\,\text{pH}, \; \text{FOM}_{SW}=550\,\text{fs} \)
\(f_{\text{MIN}}=35.6\,\text{GHz}, \; f_{\text{MAX}}/f_{\text{MIN}}=1.2 \)

\[\begin{align*}
\text{c}_{SW} &= 50\,\text{fF} \\
r_{SW} &= 11\,\Omega \\
Q &= 8
\end{align*} \]

\[\begin{align*}
\text{c}_{SW} &= 400\,\text{fF} \\
r_{SW} &= 1.37\,\Omega \\
Q &= 16
\end{align*} \]

Much lower \(r_{SW} \) leads to 2x tank Q
Scrivi Ohm per rsw. Perché 2x improvement?

Frank, 19/01/2013
Advantage increases for higher frequency step and/or larger C_{fix}.

Proposed Tank

Switch Capacitor

@40GHz
Outline

• VCO Design in ultra scaled technology
• Analysis of the proposed resonator
• Test chips design and experimental results
• Conclusions
Loop Gain with a conventional transconductor

\[G_{\text{LOOP}} = g_m R_P \]

Switch ON

\[R_{PON} = \omega L_T Q_T \]

Switch OFF

\[R_{POFF} = \omega L_T Q_T \alpha^2 \]

\[\alpha = \frac{c_{sw}}{C_T + C_{FIX} + c_{sw}} = 0.55 \div 0.75 \]

- Loop gain penalty
- Tank is an open at DC, latching issue
Loop Gain with Transformer Feedback

\[G_{\text{LOOP}} = g_m Z_{21} \]

\[Z_{21} = K \sqrt{\frac{L_S}{L_T}} R_{\text{PON}} \]

Switch ON

\[Z_{21} = K \sqrt{\frac{L_S}{L_T}} \frac{R_{\text{POFF}}}{\alpha} \]

\[\alpha = \frac{c_{sw}}{C_T + C_{\text{FIX}} + c_{sw}} = 0.55 \div 0.75 \]

Switch OFF

- Transformer restores loop gain and avoids latching

28
Simulated Impedance R_P and Z_{21}

![Graph showing simulated impedance R_P and Z_{21} as functions of frequency.](image)
Spec for a 60GHz Sliding IF Architecture

- first down-conversion to 1/3 the received frequency
- quadrature down-conversion to DC

- 40 GHz VCO center frequency with more than 20% T.R.
- Phase Noise @ 10MHz offset better than -115dBc/Hz
Realized VCO

- Inductor splitting with M_{SW} for largest tuning step
- Variable tank capacitance (C_T) with switched digital MOMs and varactor
 - $L_T=100\mu$H, $C_T=140\text{fF}$, $C_{FIX}=120\text{fF}$
 - Tank Q ranges from 4 to 5.5
- R_b instead of PMOS mirrors lowers $1/f$ noise
Chip Blocks Diagram

- Direct output and after div. by 4 for Phase Noise measurement in X-Band (8-12GHz)
- CMOS 32nm LP from STMicroelectronics
- Supply voltage: 1V
- Core area: 70um x 120um
40GHz Phase Noise Measurement

![Phase Noise vs Frequency Offset Graph]

- **Phase Noise [dBc/Hz]**
- **Frequency Offset [Hz]**

- **$1/f^3$**
- **$1/f^2$**
Phase Noise and FoM over Tuning Range

![Graph showing phase noise and FoM over frequency range with M_sw ON and OFF]

- Phase Noise [dBc/Hz]
- FOM [dBc/Hz]
- Frequency [GHz]
Summary and comparison

<table>
<thead>
<tr>
<th>REF</th>
<th>FREQ [GHz]</th>
<th>TR [%]</th>
<th>POWER [mW]</th>
<th>PN @10MHz [dBc/Hz]</th>
<th>FOM [dBc/Hz]</th>
<th>TECH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICC12</td>
<td>57.5/90.1</td>
<td>44.2</td>
<td>8.4/10.8</td>
<td>-104.6/-112.2</td>
<td>172/180</td>
<td>65nm</td>
</tr>
<tr>
<td>RFIC10</td>
<td>34.3/39.9</td>
<td>15</td>
<td>14.4</td>
<td>-118/-121*</td>
<td>178.4/180</td>
<td>65nm</td>
</tr>
<tr>
<td>JSSCC11</td>
<td>43.2/51.8</td>
<td>22.9</td>
<td>16</td>
<td>-117/-119*</td>
<td>179/180</td>
<td>65nm</td>
</tr>
<tr>
<td>ISSCC11</td>
<td>21.7/27.8</td>
<td>24.8</td>
<td>12.2</td>
<td>-121</td>
<td>177.5</td>
<td>45nm</td>
</tr>
<tr>
<td>This Work</td>
<td>33.6/46.2</td>
<td>31.6</td>
<td>9.8</td>
<td>-115.2/-118</td>
<td>177.5/180</td>
<td>32nm</td>
</tr>
</tbody>
</table>

* estimated from the reported phase noise at 1MHz
Outline

• VCO Design in ultra scaled technology
• Analysis of the proposed resonator
• Test chips design and experimental results
• Conclusions
Conclusions

• Design of mmW VCOs does not benefit from ultra scaled technologies. BEOL scaling increases routing parasitics and loss of MOM capacitors.

• A new switched resonator circuit topology, improving Q for large frequency tuning step, has been presented.

• A 40 GHz VCO in 32nm CMOS has been presented. Measurements proved a state of the art FOM over a very large tuning range.