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Introduction
◊ Coupling phenomena can take place:

- between two laser sources
(and we call them
mutual-coupling or injection )   
- in a single source, as self-coupling
of field to a remote target (and
we call it self-mixing))

◊ The level of coupling may be weak (fraction of power
interacting: down to 10-8) or strong (fraction of power 
up to a few 10-2)

laser 1 laser 2

laser target
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♦ At weak level we observe AM and FM modulations
of the cavity field, carrying information on the 
external perturbation (coupled signal in mutual
coupling) or amplitude/phase of returning field

(in self-mixing)
→ interferometer → coherent (injection) detection

♦ At strong levels we get chaos, both in mutual
coupling and self- mixing schemes) 

→ cryptography
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Mutual coupling as a new configuration of coherent 
detection
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Self-mixing as a new configuration of interferometer

Compared to other schemes of interferometry, self-mixing yields a different output signal 
yet information contained in it is the same, a sine/cosine function of optical phase length 2ks 
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approach 
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is on AMPLITUDE 
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modulation

Compared to other schemes of interferometry, self-mixing yields a different output signal 
yet information contained in it is the same, a sine/cosine function of optical phase length 2ks 
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basic self-mix properties

♦ light propagated to the target and back modulates in amplitude
the cavity field and hence the emitted power

♦ output power from the laser is P = P0 [1+m·F(2ks)]
♦ modulation index m =A-1/2 [c/2s(γ-1/τ)] depends on the  field

attenuation A-1/2 (so, self-mix is a coherent process)
♦ waveform F(2ks) is a periodic function of external phase φ =2ks,

and for weak injection is a cosine function. F makes a full cycle
every Δs= φ/2k=2π/2k =λ/2 (as in a plain interferometer)

♦ In general, the shape of F(…) depends on the injection parameter
C= (1+α2)1/2A-1/2 [ε(1-R2)/√R2] s/nlasLlas

laser 
diode

target
(reflective or 

diffusive)

P0

P0 / A

monitor
photodiode

2ks

OUT
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injection level: weak and moderate
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Chaotic Generators

Angle Sensors

LD  1-channel interferometer

Laser Diode Vibrometer

α-factor and coherence
length measurement

injection level: moderate and strong
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◊ rotating-vector  addition

qualitative and easy, but few results deduced

◊ 3-mirror model

basic results deduced with a simple analysis 

◊ Lang-Kobayashi (laser diode) equations

a complete description, yields a powerful treatment

theories for self-mixing
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rotating-vector addition

♦AM is easily detected in a DL as a modulation superposed 
on the average power emitted by the source 

♦ FM requires a frequency down-conversion, and we can 
only get it in a dual-mode, frequency-stabilized He-Ne
laser

♦ In the laser cavity, frequency and amplitude 
modulation of the lasing field occur

E0

ER exp[iφ(t)]FM
sin[φ(t)]

AM
cos[φ(t)]

φ =  2ks
k =  2π/λ

s(t) =  target distance
φ
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The II Barkhausen condition is applied to balance
at M1:    E r1 r2 exp 2α*L exp i2kL = E a exp i2ks
perturbed loop gain then follows as:
Gloop = r1 r2 exp 2α*L exp i2kL + a exp i2ks
and the zero-phase condition is
r1 r2 exp 2α*L sin 4πLnl(ν−ν0)/c + a sin 2ks = 0
The diagram at right

ν= ν0 + (c/4πLnl) a sin 4πs/λ 

is obtained for injection-perturbed frequency ν vs

unperturbed frequency ν0

Diagram shows that for C<1 there is one solution
for ν, whereas for1<C<4.6 there are 3 solutions
and ECM (ext cavity modes) start to be excited
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These Equations are the well-known Lamb’s equation for an 
adiabatic active medium, adapted to a semiconductor medium 
where density of carriers is coupled to photon density (or field 
amplitude), see R. Lang, K. Kobayashi, IEEE J. Quantum Electron., 1988

Solutions reveal: F(φ) waveforms, AM/FM modulation, C factor, bi-
and multi-stability, line broadening, route to chaos,  etc. Of course, 
equations are easily re-written for mutual coupling of E1 and E2.

Lang-Kobayashi equations
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Injection (of Self-mixing) interferometer vs conventional types
advantages:
- optical part-count is minimal

- self-aligned setup (measures where spot hits)

- no spatial, λ or stray-light filters required
- operates on a normal diffusing target surface
- signal is everywhere on the beam, also at the target side

- resolution is λ/2 with fringe counting and sub-λ with analog processing
- bandwidth up to hundreds kHz or MHz

disadvantages:
- reference is missing (in the basic setup) 
- wavelength accuracy and long-term stability is poor (with LD) 

- little flexibility of reconfiguration

features of  self-mixing interferometer
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Dolly on self-mixing applications

•• DisplacementDisplacement
•• VibrationVibration
• Velocity
•• DistanceDistance
•• AngleAngle

Metrology
Physical Quantities

•• Coherence LengthCoherence Length
•• α α -- linewidthlinewidth enhancement factorenhancement factor
•• Remote echoesRemote echoes
•• Return loss and Isolation factorReturn loss and Isolation factor

Sensing

•• CD readoutCD readout
•• Scroll sensorScroll sensor but...but...
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there are problems to be solved on the way 
of selfmix technology ..! 

a) The first is:
we need a second signal, sin 2ks or something
equivalent to that, for a digital processing,  
because the plain cos 2ks signal is not enough to
measure λ/2 displacements without sign ambiguity

- luckily enough, it happened that ....
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Testing target 
displacement

Self-Mixing 
Signal

• best regime: moderate feedback  C > 1, but also C< 4.6
• principle: counting of fast signal transitions with polarity 
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SCOTCHLITE™ 3M 
TAPE)

s

LENS

VARIABLE
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Measuring displacements 

cited by 142
(Google Scholar)S.Donati, G.Giuliani, S.Merlo, J.Quant.El. 31 (1995) pp.113-19
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• Resolution: 420 nm
• Max. Target speed: 0.4 m/s
• Distance range 0.4 ÷ 1.6 m

Trans-Z
Amplifier

Up

Derivative Polarity

Discrimination

Up-Down
Counter

Display

Down

SELF-MIXING
SIGNAL

DERIVATIVE

100 μs/div 0.2 μs/div

300 ns

Displacement: circuit functions

S.Donati, G.Giuliani, S.Merlo, J.Quant.El. 31 (1995) pp.113-19 cited by 142
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On a corner-cube, the self-mix
measures displacement up to
≥2m, in λ/2=0.42 μm steps, 
with a few ppm accuracy (see
figure, from Donati et al., Trans. 

IM-45, 1996, pp.942-947).

Using a DFB laser, λ-drifts of   
≤ 10-7 per year should be
achieved.
Instead, on a  diffuser target, 
signal is lost because of the 
speckle pattern fading

Displacement: pushing the performance limit

S.Donati, L.Falzoni, S.Merlo, Trans.Instr.Meas.
45 (1996) pp.942-47 cited by 25
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b) second problem: we need eliminate the speckle
pattern statistics that gives fading of the selfmix
signal because we want to be able to operate on
diffuser  (not a specular) target surface

- We may try tracking the bright speckle …
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Tracking a bright-speckle permits to stay on a maximum of 
intensity and avoid fading. Operation on a diffuser target is then
allowed,  with little added error

S.Donati, M.Norgia, J.Quant.El. 37 (2001), pp.800-06 cited by 24

Displacement: the bright-speckle tracking (BST)
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Block scheme of the speckle-tracking circuit. Signal from the photo-
diode is rectified peak-to-peak and demodulated respect to the dither
frequency, in phase and quadrature.  Results are the X and Y error 
signals that, after low-pass filter, are sent to the piezo-actuators X and 
Y to track the maximum amplitude or stay locked on the bright speckle

Speckle tracking technique
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BST improvement

Top: signal amplitude 
with (green line) and 
without (black line) 
speckle-tracking 
system, reveals that a 
fading (at 76 cm) has 
been removed 
Bottom: corresponding 
displacement as 
measured by the SMI

S.Donati, M.Norgia, Trans. Instr. Measur. IM-52 (2003), pp.1765-70
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… and now that the digital measurement is OK

c) we want to make an analogue processing to
measure nanometer (or <<λ) vibration amplitudes

we may do so if we are able to lock at half fringe
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at C>1, fringe response is linear. With this circuit, we can lock the 
working point to half-fringe, through an active phase nulling. Output 
signal is the error signal ΔV= [αGm]−1 Δs (λ/s), independent from
signal amplitude and speckle (if loop gain Gloop=RGmα(s/λ)σP0 is large)
S.Donati, G.Giuliani: Meas. Science Techn.,14, 2003, pp.24-32

ELECTRONIC 
FEEDBACK LOOP

Vibration, mechanical
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A developmental unit to test automotive vibrations has the following perfor-
mances: detectable amplitude ≈100 pm/√Hz; max. amplitude: 600 μmp-p;
bandwidth:70 kHz; dyn. Range is > 100 dB
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Because of the servoing arrangement, the vibration signal finds a 
dynamic range much larger than λ/2 (in practice, up to ≈200
μm) (Donati et al., J.Optics A, vol.4 (2002), pp.S283-94).

a)   

20 V

4 μm

b)   

20 V

4 μm

c)   

20 V

10 μm

measuring
PZT

response

performance of self-mix vibration pick-up
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Coupling Phenomena Coupling Phenomena 
in Semiconductor Lasers and in Semiconductor Lasers and 

Applications to SelfApplications to Self--Mix Mix 
InterferometryInterferometry, part II , part II 

end of  part I end of  part I 
please go to part IIplease go to part II
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