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Abstract—In a self-mixing interferometer (SMI) based on a 

diode laser, the measurement of the external reflector 
displacement s(t) is carried out by looking at the optical-phase 
signal cos 2ks(t), a signal readily detected as an amplitude 
modulation (AM) of emitted power. In contrast, the other 
available signal, sin 2ks(t), a frequency modulation (FM) of the 
emitted field at optical frequency, is never used because difficult 
to recover. Recently, Contreras et al. used a narrow-band 
acetylene cell to convert the FM into an amplitude signal, finding 
it is larger and has a better SNR than the AM. In this paper, we 
analyze the advantages of the new CFM (converted-FM) signal, 
calculating both amplitude and SNR, and compare theoretical 
results to published experimental evidence, finding good 
agreement. We then present options for realizing the selective 
filter in different configurations and technology. Finally, we 
evaluate the improvement offered by CFM in a number of 
measurements, like sub-wavelength vibrations, digital readout 
displacement, and diode laser alpha factor. 

Index Terms — Optical interferometers, Measurements, 
Optical feedback, Semiconductor laser diodes. 

I. INTRODUCTION 

elf-mixing interferometry (SMI) was introduced about 
40 years ago [1], but only recently it has attracted much 

interest because it is based on a very simple configuration, 
as shown in Fig.1, and yet it is powerful tool in a variety of 
applications (see for example Ref.[2] for a review).  

 
Fig.1 Schematic of a self-mixing interferometer (SMI) using a laser diode 
to sense the phase shift 2ks of field returning from an external reflector 
(or diffuser) at a distance s. 

    The most developed application of SMI is the 
measurement of displacements, vibrations, and related 
kinematic quantities [2-4]. Additionally, other features of 
the SMI signal, for example amplitude, have been used to 
develop echo detectors [5,6] up to THz frequency [7,8],  
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while waveform details have been used to measure a variety 
of quantities like e.g., index of refraction [9], line-width [10] 
and alpha factor [11-13] of the laser. The still growing areas 
of application of SMI span from device engineering [14,15] to 
biomedical [16,17] to consumer [18].  
      A laser diode is the most common optical source employed 
in the SMI (Fig.1) because it is compact and easy to operate, 
and usually carries a monitor photodiode (PD) in the same 
package The PD readily provides the readout of the signal 
P=P0 (1+m cos2ks) amplitude modulated (AM) by the phase 
shift φ=2ks (k being the wave-vector and s the target distance), 
just like in a normal interferometer.  
      The AM signal alone, however, has a problem of 
ambiguity in the measurement of displacement s(t), because of 
the non-monotonic cosine function. Several approaches have 
been devised to overcome the ambiguity, like phase unfolding 
[4], operation on external cavity mode switching [19], added 
phase modulation [20], etc.  
Additionally, a simpler and more elegant solution consists in 
using also the other SMI signal generated together with the 
AM in the SMI interaction, the sin 2ks of frequency 
modulation (FM), because the cos2ks and sin2ks pair allows 
to trace back unambiguously the phase 2ks, as demonstrated 
in a seminal paper [1]. Impressed on the optical frequency, the 
FM signal is hard to detect in a diode laser SMI, whereas it can 
be readily recovered in a dual-mode He-Ne laser [1].  
This because the He-Ne mode is easily split by the Zeeman 
effect into two orthogonal-polarized modes, spaced in 
frequency by MHz's and well decoupled from one another. 
One mode is kept inside the cavity so that it is unperturbed and 
serves as a local oscillator, while the other is allowed 
propagating to the target and collect the AM/FM modulations 
of the self-mix interaction. By beating the two modes at the 
photodetector, the AM and FM signals are down-converted 
from optical to electrical frequencies where they can be 
processed with standard electronics. This mode of operation, 
that leads to unambiguous measurement of displacement s(t) 
in λ/2...λ/8 steps (digital mode), and down to nm-resolution 
(analog mode), has unfortunately no counterpart in a diode 
laser because no mechanism for two-mode operation has been 
found, capable of supplying decoupled and frequency offset 
modes without introducing excessive burden.   
     Another interesting feature, the FM signal is much larger 
and may also have a better SNR than the AM signal, so it may 
be advantageous to use it even alone, when available, for a 
potentially improved measurement. 
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      Recently, Contreras et al. [21] reported the detection of the 
FM signal in a semiconductor laser tuned to the edge of the P-
branch line of acetylene, at λP=1531.58 nm. Thanks to the 
frequency selectivity, frequency deviations of self-mixing 
signal are translated into amplitude variations, resulting in a 
signal with a surprising increase of both amplitude (x1000) 
and SNR (x100) respect to the AM. 
Of course, the laser wavelength had to be finely tuned to the 
edge of the resonance to exploit the maximum of the FM-to-
AM conversion, requiring either a temperature or a drive 
current tuning. For ease of operation, it would be preferable to 
have to tune a filter to the laser line rather than the laser on the 
filter fixed-λ line, like demonstrated in a recent paper, Ref. 
[22], using a filter based on a Mach-Zehnder interferometer. 
      This paper is organized as follows: in Sect. II we present a 
quantitative analysis of the AM and FM signals based on the 
Lang and Kobayashi equations, and calculate signal 
amplitude, signal-to-noise ratio and improvement factors of 
the FM-to-AM conversion. In Sect. III we compare results of 
the analysis to experimental data of [22]. Then, in Sect. IV, we 
consider the options for implementation of the λ-selective 
element, and in Sect. V develop their all-fiber and micro-
optics versions and discuss their design. Last, in Sect. VI we 
present three examples of applications in which the CFM 
signal can offer a novel approach to develop SMI 
instrumentation with improved performance. 

II. ANALYSIS        

The SMI system of Fig.1 is modeled by well-known Lang-
Kobayashi equations [2,23], written as: 

    dE/dt = ½ [GN(N- N0)-1/τp] E + (K/τin) E(t-τext)×   
                                                × cos [ω0τext +φ(t)- φ(t-τext)] 

   dφ/dt = ½ α{GN(N-N0)-1/τp} + (K/τin) E(t-τext)/E(t)×     
                                                 × sin [ω0τext +φ(t)- φ(t-τext)] 

    (d/dt)N = Jη/ed - N/τr - GN(N- N0) E2(t)                   (1) 

where:  
GN = modal gain = 8.1·10-13 m 3s -1, 
K = ηs (1-r2

2)(r3/r2) fraction of field coupled into the oscillating 
mode, in terms of mirror (field) reflectivity (Fig.2), and mode 
superposition factor ηs, 

r2 = output mirror (field) reflectivity = 0.59 typ. 
ηs = mode superposition (field) factor = ηm λ/πwt, product of 

mode distribution factor ηm (typ.=0.5) and of geometrical 
(field) attenuation λ/πwt, as derived by acceptance invariance 
[23], 

wt = spot size at the target, =[λs/π]1/2 as a diffraction-limited 
value with a focusing objective, or wt = sθ for a free space 
propagation with divergence θ (=λ/πw0),  

N = carrier concentration (m -3),  
N0 at inversion =1.2·1024 m -3,  
τext =2ns/c = round trip time of external cavity 
s = distance to external cavity reflector,  
2ks = external optical phase shift  

τin =2nLin/c = round trip time of laser cavity, =2...5 ps, typ. 
τp = photon lifetime in laser cavity, =5...10 ps, typ. 
τr = carrier lifetime = 2 ns, typ. 
α = line width enhancement factor, (taken 3 ... 6) 
ω0 = k/c = unperturbed frequency (λ0= 1.55 µm) 
ω0τext =2ks 
Jη = pumping current density, and  
η = internal quantum efficiency 
d = active layer thickness   
V = active volume = 8·10-17 m 3 

 

 
Fig.2. Layout of an SMI and associated quantities.	

Also introduced is the C-factor [1-3] given by: 

        C = (1+α2)1/2 ηsK (τext/τin)                            (2) 

In this notation, K accounts for the mirror and geometrical 
losses, and ηs for the mode-distribution mismatch. 
With the above values, the threshold current is Ithr=11 mA, and 
in simulations it is convenient to assume a moderate overdrive 
factor, e.g. J/Jthr =1.36 so that J=15 mA.  
     Self-mixing theory [2,5] predicts that the AM modulation 
index (or amplitude ΔΕ) is proportional to cos 2ks at small K, 
whereas the FM modulation index (or frequency deviation Δν)   
is proportional to sin (2ks+atan α).   
     These results are readily found from L-K equations (Eq.1), 
on letting K<<1 and developing [3,4] field amplitude and 
phase in the small signal regime as E= E0+ΔΕ, and 
ω=dφ/dt=ω0 +Δω,  where E0 and ω0 are the quiescent values 
obtained for dE/dt=0, dφ/dt=0. Doing so, we find: 
     ΔE = [E0 κC cos2ks] / [1+ C cos2ks],     
                                   where   κ= (1+α2)-1/2τp/τext         (3A) 
           = E0 κC cos2ks         for C<<1, and                   (3B) 

     Δω = - (C/τext) sin (2ks +atan α)/(1+C cos 2ks)              
           = - (C/τext) sin (2ks +atan α)    [for C<<1]          (4)   

      Thus, for C<<1, both modulations are sinusoidal, and are 
phase-shifted of the difference arg(ΔE)-arg(Δν)=ζ of the sine 
and cosine function. Looking at Eqs.3 and 4 we get: 

                             ζ= π/2-atan α                                     (5)  

When α is small (≈0), like for a He-Ne laser, ζ≈π/2 and the 
AM and FM signals constitute a nice orthogonal pair of 
signals, i.e., sin2ks and cos2ks [1], from which it is relatively 
easy to trace back the displacement s(t) unambiguously [1]. 
On the contrary, in semiconductor lasers the large α-factor 
brings the AM and FM signals closer to in-phase condition. 
Yet we can still apply the same processing of He-Ne, although 
with some loss in SNR, by converting the AM and FM signals 
into an orthogonal pair, as shown in Sect. VIb.  
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II a- Signal Amplitudes 
      From Eqn.3 and 4, the (peak) amplitudes of the AM and 
FM signals are, for small C: 

           ΔEp = E0 κC,       Δωp = C/τext                               (6) 

Now, let us write the detected power P0 of the SMI in 
unperturbed conditions as: 

             P0 = E0
2 

where for simplicity a constant multiplicative factor A/2Z0 
[24] has been omitted. The power variation due to the AM 
signal is 

              ΔPAM = 2E0
 ΔE  = 2P0 κC                                            (7) 

About the FM-to-AM converted signal, upon edge-filtering 
the FM signal with a filter of frequency response F(ν), a 
photocurrent variation is developed, given by the power Pout = 
Eout

2 multiplied by the filter slope SF and by the (peak) 
frequency deviation Δνp=Δωp /2π. Thus, the converted-FM (or 
CFM) signal is given by: 

       ΔPCFM  = Pout SF Δωp /2π = Pout SF C/2πτext                  (8) 

where Pout may in general differ from power P0. In Eq.8, the 
slope of the filter, SF= dF(ν)/F(ν)dν, is approximately given 
by the inverse of half the filter line width, or σF ≈ (Δνfilter/2)-1,  
assuming F(ν) is normalized to unit area. 
We define an amplitude gain GFM-AM of the FM-to-AM 
conversion of the SMI signal by edge filtering process, as 

                     GFM-AM = ΔPCFM/ΔPAM                                  (9) 

Using Eqs.7, 8 and 3A, we obtain   

        GFM-AM =  [SF (1+α2)1/2/4πτp ] (Pout/P0)                    (10) 

Note that, besides a trivial power ratio, the gain only depends 
on photon lifetime τp and alpha-factor α for a given laser. 

II b - Signal-to-Nose Ratio  
     Let's start evaluating the noises associated to the AM and 
FM signals. About the amplitude signal ΔPAM (Eq.7), the 
dominant contribution in the coherent process of SMI signal 
detection is the shot noise of the large (unperturbed) 
component E0. This noise has a rms value given by [4,24]:   

                   pnAM = (2hνP0FnB)1/2                                   (11) 

where P0 is the power of the AM signal, and Fn stands for the 
excess noise factor respect to the quantum noise limit (Fn= 
RIN/[P0/2hνB]), inclusive also of the quantum efficiency loss 
1/ηq of the detector). Using Eq.7 with E0

2=P0, the SNR, 
understood as the ratio of peak-signal to rms noise is: 

          SNRAM =  2 κC [P0/ 2hνFnB]1/2              (12) 

or, the SNR of the AM channel is 2κC times the value of the 
SNR associated to the detection of power P0. Using Eqs.2 and 
3A we can also express Eq.12 as:  

         SNRAM =  2 ηsK (τp/τin) [P0/ 2hνFnB]1/2            (12A)  

or also: 

         SNRAM =  2 ηsK (τp/τin) SNRP0                         (12B) 

where we have let SNRP0 =[P0/2hνFnB]1/2 for the signal-to-
noise ratio of power P0 measurement. 
       About noise of the FM channel, we start from the well 
known Schawlow-Townes line width [25,26], in the version 
written with a ½ correction factor introduced by Lax [27] as:   

         ΔνS-T = ½ g 4π hν Δνcav
2/Pout                        (13) 

where Δνcav is the cavity line width, half-width half-maximum 
(HWHM), ΔνS-T is also a HWHM line width, g=N2/(N2-N1) is 
the spontaneous emission factor (g≈1 above threshold), and 
Pout the power emitted from the laser.  
      In the following, we assume g≈1, and let in Eq.13 
2Δνcav=1/2πτp to express [28, 29] the full-width half-
maximum (FWHM) line width 2Δνcav in terms of photon 
lifetime τp, and finally multiply by the line width enhancement 
factor 1+α2 of the semiconductor laser [25-30] obtaining for 
the Schawlow-Townes line width Δνn0: 

            Δνn0 = (1+α2) hν (Pout 8π τp
2)-1

                             (14) 

Note that this result is independent from bandwidth B or 
measurement time T. 
      We could think Δνn0 is the frequency rms noise we are 
looking for, but this is a fallacy. Indeed, the Schawlow-
Townes line-width of Eq.14 is the width of the frequency line 
(or, the standard deviation of the frequency distribution), 
while we need the frequency noise superposed to the 
frequency signal, which is the average frequency observed on 
an integration time T (or, over a measurement bandwidth 
B=1/2T), a quantity that will scale down as 1/√T or √B. 
To take account of the integration, following P. Laurent et al. 
[31] we recall that the white noise spectral intensity S(Ω) of 
pulsation Ω=2πν, is 2 times the rms line-width ΔΩn0=2πΔνn0. 
So, by expressing the spectral density of frequency as 
S(Ω)/(2π)2, multiplying it by B and taking the square root [32] 
we obtain for the contribution to frequency noise as: 

     ΔνnI=√[2ΔΩn0/(2π)2B] =√(Δνn0B/π). 

Using Eq.14 the frequency noise rms contribution reads: 

    ΔνnI = (1+α2)1/2 [hνB /2Pout]1/2 (2πτp)-1                   (14A) 

 [Alternative derivation: interesting to note, with a different 
approach we could had written directly ΔνnI = Δνcav/√N to 
represent that each photon samples the cavity line and 
introduces an uncertainty equal to Δνcav that scales down as 
1/√N for N photons; and by substituting Δνcav=1/4πτp and 
N=(PoutT/hν) for the number of photons in the measurement 
time T =1/2B, we get the result ΔνnI =[hνB /2Pout]1/2 (2πτp)-1, 
which differs from Eq.14A only for the a-posteriori factor 
(1+α2)1/2. Also interesting point, on reversing the steps of 
reasoning, from ΔνnI=Δνcav/√N we trace back the Schawlow- 
Townes line width given by Eq.13, with a new approach 
completely different from standard derivations, one that 
incidentally justifies the ½ correction of Lax]. 
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High level effects: Eq.14A gives the frequency noise of an 
unperturbed, stand-alone laser. 
But, when it is subjected to optical feedback, the line-width is 
affected and, as well known since early studies of optical 
feedback, it is either narrowed or broadened according to the 
phase of the returning field, in the regime II of the Tkach and 
Chraplyvy diagram (T-CD) [33]  
(On the contrary, feedback has no extra effect on the amplitude 
noise pnAM [34,37]).  
At increased coupling, the laser first returns to the single mode 
regime (the narrow region III of T-CD) then enters in the 
regime IV of coherence collapse where it breaks into period-
1, multi-periodicity, and chaotic oscillations [38, 39]. 
Line narrowing/broadening has been extensively studied by 
Petermann [34-36] who found that the perturbed line-width 
Δνpert, respect to the unperturbed Δν0, is reduced by a factor: 

      Δνpert/Δν0= [1+Csin (2ks+atan α)]-2                                   (15) 

where as usual 2ks=2πΔνpertτext. From Eq.15, the maximum 
narrowing factor is (1+C)-2 and is found at the external phase 
value 2ks+atan α= π/2, whereas the maximum gain is at 2ks= 
0, for which the reduction factor is (1+κτ/τin)-2 [37]. Similar 
results were found also by Agrawal [40] and Duan et al [41]. 
   Interestingly, the laser will preferably lock at the minimum 
line-width rather than at the maximum gain [35-38], so that 
factor can (1+C)-2 be assumed as the naturally occurring 
reduction of line-width and frequency rms deviation.  
Actually, as noted by Schunk and Petermann [35], during a 
full 2π-swing of the phase 2ks, the laser may, at increasing C, 
enter into coherence collapse for a certain interval of phase 
2ks, with the line-width increasing to infinity [35-37] in 
simulations (see for example Fig.13 of Ref. [34]). In this 
regime, a period-1 or a multi-periodic, or a chaotic waveform 
is generated by the laser, as amply confirmed in literature 
[37,39].  
     Yet, the time scale of these coherence collapse waveforms 
is much shorter (because of the order of 1/f2, the upper 
frequency cutoff of the laser) than the time scale of the SMI 
measurement (ms, or at most, µs), so these oscillations are 
filtered out from the system frequency response, and don't 
disturb the operation of the much slower SMI waveform.  
     Indeed, the average value of field amplitude or phase in 
crossing a narrow coherence collapse region is found to be the 
same as in nearby stable states [42], as we have verified 
experimentally. Also the spectrum of frequency fluctuations at 
the unstable phase values corresponding to the coherence 
collapse is little influenced: experimentally the power density 
is found to increase, almost uniformly in frequency, of 20-50% 
when crossing the unstable regions [42] at C values up to 
20...50. This statement may look surprising but doesn't 
contradict the previous analyses [33-37, 40-42] based on 
stability exponents, because relative to a different time scale, 
a slow one for SMI signals.  
The reason why the SMI signals can coexist practically 
unaffected by the coherence collapse waveforms is out of the 
scope of this paper and will be treated in a separate study. 

It's only when the entire space (κ,2ks) is finally filled with 
unstable states, as found numerically [42], that we see 
experimentally random amplitude and phase switching and 
operation of the SMI is impaired. 
     So, in practice, we can conclude that the SMI can be 
operated up to C factors as high as 20…50 without incurring 
in any effect disturbing the operation of the measurement on 
ms or µs scale. Correspondingly, in the range C up to 20...50, 
we can assume the quantity χ(1+C)2 as the line-width 
narrowing, where χ = typ. 0.8-1.0 is an adjustment factor.  
The narrowing impacts Δνn0 as χ(1+C)2 and ΔνnI as (1+C)√χ  
because of the argument leading to Eq.14A. 
Then we can rewrite Eq.14A for the frequency rms fluctuation 
of the laser under optical feedback as: 

    ΔνnI = (1+α2)1/2[hνB/2Pout]1/2 [2πτp√χ(1+C) ]-1                 (16) 

Now, the SNR of the FM signal is found as the ratio of signal 
Δνp =C/2πτext (Eq.6) to noise Δνn of Eq.16. By considering 
that both signal and noise are converted into amplitudes by the 
same multiplicative factor SF, the same ratio will hold also for 
the converted signal SNRCFM and thus we can write: 

    SNRCFM-I = √χ(1+C) C (τp/τext) (2Pout/hνB)1/2(1+α2)-1/2 

             = √χ(1+C) ηsK (τp/τin) (2Pout/hνB)1/2                 (17) 

 

 
 

Fig.3 (color online) Signal-to-noise ratio of AM (blue dashed line) and 
CFM (red dotted line) channels plotted versus measurement bandwidth B 
and with powers Pout and P0 as parameters. Points E and T are experimental 
and theoretical pairs. Assumed values are: C=2, α=6, Fn=2, χ=0.8, τp = 
4ps, τin= 9ps, and τext=3.67 ns. 

 
 
In Fig.3 we report the diagram of AM SNR ratio (Eq.12) and 
of the FM SNR (Eq. 17).  
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From the comparison, it turns out that the CFM signal behaves 
better than the AM especially at large bandwidth, where it can 
outperform the AM by more than one decade at equal used 
power. 

III.      CHECK WITH EXPERIMENTAL DATA 

An experimental validation of the interferometer filtering has 
been carried out as described in Ref. [22], using a DBF laser 
(Laser Wavespectrum WSLP-1550-008m-9-DFB), emitting 
25-mW at λ =1550-nm. An MZ-I filter was assembled in both 
the micro-optics and the all-fiber technology, to realize the off-
line configuration (as explained later in Sect. IV). 
    In Eq.10 we now insert the slope value SF =19 GHz-1 of the 
Mach-Zehnder filter [22], the power ratio Pout /P0 = 0.08 
resulting from the powers used in the CFM (Pout=0.8-mW) and 
AM (P0 =10-mW) channels, and the estimated values of τp= 4 
ps for the DFB laser. Then, for α=6 we obtain from Eq.10 a 
gain GFM-AM=91, in reasonable agreement with the 
experimental value of 70 found in [22]. 
Note that if the full power were used in the CFM channel, the 
gain would have increased to GFM-AM =1127, a value 
comparable to that found in [21] using the acetylene cell as the 
frequency filter. 
Further, to evaluate the SNR in Eqs.12 and 17, we take: 
- mirror reflectivity r2

2=0.5, and  
- target reflectivity r3=0.6 (estimated), so that  
- coupling factor K= r3(1-r2

2)/r2 = 0.434 
- τp =4-ps, τp/τin=[- ln(r2r2)]-1 =1.44 
- superposition factor  ηs=A-1/2=ηm λ/πwt=0.6�1.53�10-3/3.14 

�1.74 =0.169�10-3 (λ/πwt is the back trip attenuation for a 
spot wt at the target and ηm=0.6 the mode superposition),     

- κ= 0.179�10-3 
- laser power output Pout=20-mW, and AM channel power  
  P0= 5-mW  
- measurement bandwidth B: AM, 28 kHz, and CFM, B=20 
  MHz   
- excess noise factor Fn=NF/ηq =2.5 (for a laser excess noise 
  NF=2 and a detector quantum efficiency ηq=0.8) 
      Inserting these values in the above expressions gives: 
C=2.06 (a value consistent with the waveform of the SMI 
signal shown in Fig.2, Ref. [22]), and from Eq.12 SNRAM=106 
respect to the 70 found in the experiment [22].  
About Eq.17, we find the theoretical value SNRCFM-I =117, to 
be compared to the measured value of 98.  
In Fig.3 the pairs of theoretical and experimental points are 
reported as T’s and E’s.  
   Of course, having used estimated values of parameters, not 
measured ones, the match of calculated and experimental data 
can be regarded as more than satisfactory. Yet the values of 
SNRAM and SNRCFM can be reconciled by just taking a slightly 
different set of parameters like Κ,  τp,  τin, α, and B.  
   However, the match cannot be much better than the order-
of-magnitude, because the amplitudes of ΔPAM and ΔPCFM 
signals (Eqs.7 and 8) are valid in the small C approximation 
and are expected to saturate somehow at C>1. This partly 
explains why T's are consistently higher than E's in Fig.3. 

       With the factor χ introduced in Eq.17 we could take into 
account saturation, but this will be studied in a separate paper. 
From the results, it turns out that the important factors 
contributing to the improvement in SNR of the converted FM 
respect to the AM channel, are: (i) signal power Pout, and (ii) 
measurement bandwidth B. A relatively high value of power, 
such as the Pout=350-mW employed in Ref. [21] is the reason 
for the higher SNRCFM value found, whereas if we use a laser 
with a moderate power (say 3.5-mW) to mitigate laser safety 
issues, the gain in SNR drops to a one-digit figure, other 
parameters being unchanged.  

      IV. SCHEMATICS FOR THE FM-CHANNEL SMI 

    Basically, there are two options for the implementation of the 
FM-channel SMI, according to the placement of the selective  
filter respect to the laser-to-target propagation path. 
     As shown in Fig.4, we can have: (i) an in-line SMI setup, 
when the filter is placed at the laser output and is crossed by 
the beam going to the target and back, or (ii) an off-line SMI 
setup when we create a separate path picking a fraction of the 
outgoing beam to feed the filter.  
 

 

Fig.4. Two options for the FM-channel SMI: (top) in-line setup with the 
filter crossed by the laser beam along the go-and-return path, with the 
photodiode PD summing up the AM and CFM signals; (bottom) off-line 
setup, with the filter located off the propagation path and fed by a beam 
splitter, providing the AM channel at PD1 and the CFM channel at PD2. 

 In the first case we have available a larger power (and a better 
SNR), but the AM and the converted FM signals will be 
summed up into just one channel; to recover both AM and FM 
signals we shall be able to dither the filter in and out of the 
propagation path.  
On the other hand, in the second case we have less power but 
can access simultaneously both the AM and the converted FM 
signals (at photodiodes PD1 and PD2, Fig.4), a feature useful 
for most applications (see Sect.VI).  
Another crucial difference of the two schematics is about the 
reflection from the filter back into the laser: a strong reflection 
from the entrance surface (like, e.g., the case for a Fabry-Perot 
filter) can severely affect the laser of the in-line setup, whereas 
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in the branched setup we can insert an optical isolator before 
the filter and cut the reflection off. 
About the way a retro-reflection can affect the laser in the in-
line setup, we shall consider two mechanisms: (i) changes of 
the optical phase of the returning field and (ii), strong power 
injection into the laser cavity.  
Writing the distance dF to the filter entrance mirror as the sum 
of a constant part plus a time-varying term, dF= dF0 +ΔdF(t), we 
see that phase kΔdF(t) is actually a spurious self-mixing signal. 
This signal is usually picked up unintentionally because of the 
micro-phonics sensitivity to ambient vibrations of the laser-
and-filter mechanical assembly. Of course, we need to ensure 
kΔdF(t)<<1 [i.e., ΔdF(t) much less than a small fraction of λ] 
through a suitable mechanical design of the assembly, sturdy 
and immune to vibrations from the ambient.  
The second contribution, a constant power reflected back into 
the cavity, may simply entail a change of emitted power, when 
the distance dF0 is small (less than a few cm), as explained in 
Ref. [43] where the dependence of power on the tilt angle of 
input filter mirror respect to output laser mirror is also unveiled. 
In the case of simultaneous large reflections and large distances 
even a constant power back-reflected into the cavity may drive 
the laser to the high-dynamics regimes of multi-periodicity and 
chaos [33-35].  Yet these regimes are avoided when the distance 
to the filter is kept small (a few cm or less) and the mechanical 
mount is made stiff enough to become insensitive to ambient 
vibrations. So, in principle, all the in-line configurations of 
Fig.5 can be implemented. 

V. FILTERS 

For the FM-to-AM conversion to be effective, we need a 
relatively narrow-line filter: from the results of Sect. II we need 
typically a line-width ΔλF ≈ 5...10-pm (FWHM) or a slope σF≈ 
1.5...3 GHz-1, as mentioned in Sect. III. 
      We have three possible technologies to implement the filter: 
(i) absorption lines of gases; (ii) grating filters; (iii) interfero-
meters.  An example of option (i) is the acetylene cell line at 
1531.58 nm used in Ref. [21], while Ref. [44] is an example for 
(ii). However, in case (i) the selectivity is at a fixed wavelength 
that may not be reasonably close to the laser tuning range, thus 
restricting practical applicability, and in case (ii) wavelength can 
be the tuned by tilting the (bulk) filter or stretching the fiber (in 
a Fiber Bragg Gratings).  
    About (iii), any of the well-known interferometer schemes 
used in electro-optical instrumentation [4] and optical fiber 
sensors can be employed to make the FM-to-AM conversion, 
like e.g. Fabry-Perot (FP-I), Sagnac Ring (SR-I), Michelson (M-
I) and the Mach-Zehnder (MZ-I) interferometer of [22].  
      The schematics of these interferometers, drawn in the bulk-
optics version suitable for in-line setup are reported in Fig.5.  
The output response P(ν) of the M-I and MZ-I to an input power 
P0 is written as:  

                 P(ν) = P0 (1+cos 2πνΔLn/c)                      (19A) 

where ΔL=L1-L2 is the difference between the length of the two 
arms for the MZ-I, and ΔL=2(L1-L2) for the M-I. Differentiating 
P respect to ν at middle of the fringe yields a slope: 

                   SF = 2π (nΔL/c)                                       (20A) 

 

 
 
 
 
 

 
 

 
 
 
 

 
 

Fig.5. Steep-edge filters for the FM-to-AM conversion of SMI signals can 
be implemented by different configurations of interferometers, like the 
Michelson, Fabry-Perot, Mach-Zehnder, and Sagnac Ring shown here. The 
schematics are exemplary of the in-line setup using micro-optics (or bulk-
optics) technology (adapted from [4]).                      

The response of the FP-I and the SR-I is:  

        P(ν) = P0 /(1+F2 sin2 2πνnd/c)                          (19B) 

where d is the mirror spacing for the FP-I, and half the perimeter 
for the SR-I, and F is the finesse, given by F=2r1r2/(1-r1r2) [4] in 
term of the mirror (field) reflectivity for the M-I, and F=2t/(1-t) 
for the SR-I (t being the field "bar" coupling factor). 
    Correspondingly, the maximum slope, obtained by 
differentiating Eq.19B is found as:   

              SF = 2π (sn/c) ½(F2-1)1/2       

                    = 2π (sn/c) ½ F     (for F>>1)                     (20B) 

Thus, at equal physical lengths (ΔL=d), the FP-I and SR-I 
provide a slope ≈ ½ F times larger than MZ-I and M-I. 
      On choosing the filter, large slope is not the sole parameter 
of interest, however. Several features like back-reflection, 
number of arms, number of beam splitters and mirrors, etc., as 
summarized in Table I, shall be taken into account in the 
practical implementation. 
      For example, because of the back-reflection, M-I and FP-I 
filters should be preferred in the off-line configuration, whereas 
the MZ-I and SR-I filters are suitable also for the in-line 
configuration. 
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Table I  Comparison of interferometer-based filters 
_______________________________________________ 
           M-I       FP-I      MZ-I        SR-I 
Responsivity                       2            F            1              F 
Back-reflection to source    yes          yes          no          no 
No. of arms                           2             1             2              1 
Reference available             yes          no          yes           no     
No. of beam splitters 
(or partially refl. mirrors)     1             1             2              1 
Metallization required 
(for fiber versions)                2             2             0             0 
________________________________________________ 
Notes: The M-I and the FP-I can have source and detector on the same side 
if the output is taken by a beam splitter added on the input path. Back-
reflection is for the basic configuration with mirrors; using corner cubes, it is 
avoided in the Michelson. 
________________________________________________  
 
Tuning of the resonance is readily implemented in M-I and FP-
I filters by means of a PZT actuator mounted on a mirror (as 
shown in Fig.5), whereas for MZ-I and SR-I filters we either 
need to insert a phase modulator in the propagation path, or to 
collapse two mirrors into a double total-reflection prism (as 
hinted in Fig.5) to allow the PZT actuator change the path length 
while maintaining alignment of the interferometer. 
       About technology, in addition to the bulk- (or micro-) optics 
configurations shown in Fig.5 we can use the corresponding all-
fiber versions, as exemplified in Fig.6 in the case on the off-line 
placement of the filter. [Obviously, we may have also the all-
fiber in-line and the micro-optics off-line configurations, whose 
schematics are omitted here to save space].  

 
 

 

 

 
 
 
 

 
Fig.6 same as Fig.5, but here the interferometers are here implemented with 
the all-fiber technology and exemplary of the off-line placement of the 
filter (adapted from [4]). 

For example, as developed in [22], using an unbalance of 
ΔL=60-cm, and taking n=1.5 for the fiber, Eq.20A gives SF=19 
GHz-1. The phase modulator (PM) was realized by a PZT 
cylinder with a few turns of fiber wound on it, and it allowed to 
tune the filter to the laser wavelength on several FSR (free 
spectral range) of the filter. By a servo loop, the working point 
of the MZ-I filter was locked at half the maximum power of the 
SMI signal (i.e., at half-fringe), where we find the largest slope 
of the MZ-I filter.   

VI. APPLICATIONS 

      Several applications may benefit from the increased signal 
amplitude and SNR offered by the converted FM signal, when 
used in place of the usual AM signal, and this applies to both 
the on-line or off-line configurations. Even more important, the 
simultaneous availability of CFM and AM signals allows to 
cover new applications for the laser diode SMI, equaling those 
of the He-Ne dual mode laser. Below we list three examples 
(yet not exhaustive) exploiting the use of the CFM signal. 

VIa - Measurements of Sub-Wavelength Amplitude of Vibration 
     Interferometry is a well-known technique for analogue 
measurement of sub-wavelength amplitude of vibration [2]. 
When specialized to the SMI configuration, it takes the form of 
a servo loop locking the SMI at half-fringe,  realized by means 
of a feedback loop including photodiode preamplifier, 
differential amplifier, voltage-to-current converter and laser 
bias-current feed [2,4,45,46], so that the SMI signal 
cos2k(Δs+λ/4) becomes -sin 2kΔs≈-2kΔs, or, it is linear for 
small amplitudes Δs. Readout of the signal is available at the 
difference amplifier output [45], and the dynamic range is nicely 
expanded (up to several mm) because of the feedback effect, 
while the minimum detectable signal is found experimentally to 
go down to typically 50…100 pm/√Hz [46]. 
     Theoretically, we can repeat the arguments developed in 
Sect. II A to evaluate the minimum detectable Δs or NED (noise 
equivalent displacement) [4] of the SMI vibrometer. We start 
considering of an SMI signal of the type 

             P = P0 [1+Vcos2k(Δs+λ/4)]                                 (21) 

where V is the fringe visibility or, equivalently, the modulation 
depth 2κC of the SMI signal (Eq.7). 
The NED is given by the phase noise ϕn [on its turn given by the 
inverse of the SNRAM=2κC/√(P/2hνB) of the amplitude 
measurement], divided by 2k [4], so that we can write 

    NED = (λ/4π)/SNRAM = (λ/4π) (2hνB/VP0)1/2/2κC     (22) 

where B is the measurement bandwidth and P0 is the received 
optical power carrying the SMI signal. 
     Using the converted FM signal in place of the usual AM 
signal, Eq.22 would become NED = (λ/4π)/SNRCFM or, we get 
an improvement of NED just given by the factor GSNR= 
SNRCFM/SNRAM. Should the source of the vibrometer be the 
laser presented in Ref. [21], for which a gain GSNR=87.5 has been 
measured, then the attainable NED would drop from the 
reference 50...100 pm/√Hz to 0.56…1.13 pm/√Hz, a quite 
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interesting value. A similar result would be obtained with the 
setup of Ref. [22], reporting a factor 149 of SNR improvement 
with a 20-mW laser source: in this case the NED would drop to 
0.33…0.66 pm/√Hz. 
Yet, we should consider that the above powers are rather large 
respect to those normally employed for safety issues in a laser 
vibrometer.   
      So, let us now we evaluate the improvement for the 
realistic case, i.e., for a wavelength λ=850-nm, a power Pout=5-
mW, of which 10% used in the off-line branch FM converter, 
a preamplifier bandwidth B=1-Hz, and a distance s=60-cm, 
like in the design of the vibrometer in Refs. [45,46] attaining 
a record low 20-pm/√Hz.  
      With the numerical values of Sect. III, we get form Eqs.2-
8: ηs=ηm λ/πwt =0.4�10-3, being wt =0.4-mm at s=60-cm, and 
the C factor is slightly less than one, C=0.535, in accordance 
with the moderate regime of feedback observed 
experimentally [46]. Then, from Eqs.12-15 we find 
SNRAM=2430.  
From Eq.22, this SNR corresponds to a minimum detectable 
displacement NED=25.9-pm for the AM channel, in 
agreement with the 20-pm of the experiment reported in [46].  
      On the other side, using the CFM channel we find 
SNRCFM=7.2, so there will be no advantage in using it at 1-Hz 
bandwidth and with a 5-mW power.  
      But, if the vibration signal is fast, like in the application to 
acoustic emission, and we expand the bandwidth to B=1-MHz, 
then SNRAM will drop to 2.43 while SNRCFM is still 7.2, so we 
have an advantage in sensitivity of a factor 3 over the 
NED=25.9 -nm of the AM channel. Even more, using Pout=50-
mW (and P0=5-mW) we would add another factor √10, and the 
improvement becomes 9.5, so that the minimum displacement 
measurable at B=1-MHz would go down to NED=2.7-nm, a 
quite interesting result. 
Another application sharing the same problems of vibrometers 
is the detection of single micro-particles in a gas flow, 
successfully reported in Ref. [48]. 
 

VIb- Two Channels Displacement Measurements 
      As introduced in early papers on SMI [1,4], the availability 
of two orthogonal signals cos2ks and sin2ks allows to trace 
back the displacement s(t) without the ambiguity caused by 
movement reversals [19]. The digital readout of the SMI 
signals easily follows, and consists in up/down counting the 
semi-periods of both cos and sin waveforms at their zero-
crossings, looking at the polarity of the other signal to decide 
the sign of the count. As there are two zero-crossings per 
period in each waveform and the period corresponds to a λ/2-
displacement, this SMI is a digital readout instrument with a 
LSB λ/8-resolution [4], i.e., 79-nm for a λ=633-nm He-Ne 
laser, as developed in [1]. 
      With the new, converted-FM SMI channel becoming 
available, we can apply the above mode of operation also to a 
semiconductor laser source. The only problem is that the AM 
and CFM signals are not really orthogonal, as we can see from 
Eqs.3 and 4. In power, they are written as:  

        ΔPAM= P0  κC cos2ks               (23A) 

       ΔPCFM= P0 σF (C/τext) sin (2ks +atan α)                  (23B) 

After a scale factor adjustment to bring the amplitudes κC and 
σF (C/τext) to the same value A=κC(σF /τext) [by multiplying the 
first by (σF/τext) and the second by κ] we can make an 
orthogonalization by sum and difference, generating signals 
Σ and Δ: 

  Σ = A [cos2ks + sin (2ks +atan α)] =  
   = 2A cos(2ks -π/4 +½ atan α) sin(π/4 +½ atan α)    (24A) 

  Δ = A [cos2ks − sin (2ks +atan α)] = 
  = -2A sin(2ks -π/4 +½ atan α) cos(π/4 +½ atan α)    (24B) 

      Now, Σ and Δ contain cos and sin of the same argument, 
so they are orthogonal, and by processing them as outlined 
above for the He-Ne laser,  the displacement s(t) can be 
measured in λ/8 steps. The schematic needed to implement the 
idea is reported in textbooks (see e.g., Ref. [47]) and we omit 
it here to save space. 
      A problem now arises: for the orthogonalisation to be 
effective, we need the alpha factor be not very high, because 
for large α the term ½atan α in Eq.24 becomes π/4, and the 
amplitude cos(π/4+½atanα) of signal Δ vanishes, as indicated 
by Eq.24Β.  The other the multiplicative term, of Σ in Eq.24A 
poses no problem, because sin(π/4+½atanα) is around unity 
for large α. 
     Let's now evaluate the minimum SNR (or the maximum α-
factor) that makes Δ still usable. At large α, from Eq.24B 
signal Δ is reduced by a factor cos (π/4+½atan α) ≈ 2/α [an 
approximation good to <5% already at α>2.5], while Σ is 
unaffected.  
Thus, the SNRΣ of Σ is the composition of SNR of the two cos 
and sin addenda in Eq.24A, which are the SNRAM and 
SNRCFM. With easy algebra we find for the result: 

    SNRΣ= SNRAM  SNRCFM/(SNRAM
2+ SNRCFM

2)1/2         (25) 

This is the SNR of Σ, whereas for Δ we have a signal 2/α times 
(for large α) the amplitude A, so we have: 

    SNRΔ= 2 SNRΣ /α                    (26) 

To be able resolve the λ/8 count in the displacement measure-
ment, we need NED= λ/8, and equating (Eq.22) to the NEDs of 
Σ  and  Δ, NED=(λ/4π)/SNRΣ,Δ, we find the required SNRs as: 

         SNRΣ = 2/π,      SNRΔ = 4α/π                             (27) 

Thus, the requirement is not so demanding, in view of the 
numerical evaluations of Sect. II, or, the λ/8 count resolution can 
be easily obtained even at large α-factors, like α=6. 
VIc - Alpha Factor Measurements 
The line-width enhancement factor, or alpha-factor, introduced 
by Henry [49] is important in semiconductor lasers as it 
determines how much amplitude noise is transferred into 
frequency noise [50], and for this reason the α is introduced as 
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a multiplicative factor in the second of the Lang and Kobayashi 
equations (Eq.1). A number of different methods have been 
proposed for the measurement of the alpha factor, and Ref. [51] 
presents an account of the outcomes found on applying them in 
a round robin test. Along with methods that are rather 
complicate, the original proposal based on SMI [11] is much 
simpler and easy to carry out experimentally. It is based on the 
analysis of the self-mixing waveform generated by a sinusoid 
driven target, and we look at waveform details like zero crossing 
and edge switching times. To apply the method, we only need 
C>1, that is, to operate in the moderate coupling regime.   
Now that we have available both AM and FM signals, which are 
phase shifted of  ζ= π/2-atan α (Eq.5), the measurement of the 
α-factor is even simpler and also feasible at in the weak coupling 
regime (C<1), because we just have to measure the phase-shift 
between AM and FM signals, arg(ΔE)-arg(Δν)=ζ to trace back 
α fromEq.5. 
About accuracy, a small error Δζ  in phase-shift measurement 
will determine a Δα error in alpha factor, which can be found by 
differentiating the inverse function of Eq.5 with the result: 

         Δα  = (dα/dζ) Δζ  = - (1+α2) Δζ                          (28)                       

The phase-shift error is contributed by three terms: (i) phase-
shift unbalance of the electronic circuits handling the photo-
detected SMI signal, a deterministic error Δζdet  that should be 
carefully trimmed to zero, (ii) the error Δζmic due to stray 
vibrations collected by microphonics, and (iii) the phase noise 
of the two (AM and CFM) channels. Phase noise is the inverse 
of the SNR of the amplitude, SNRP =[PAM/2hνFB]1/2 for a signal 
power P0 on a bandwidth B, and this is the contribution for the 
AM channel (Eq. 12), while for the CFM the SNR is GSNR = 
SNRCFM / SNRAM times larger (Eq.16). 
Summing up (as squares) the two contributions, the total phase 
noise fluctuation Δζn is: 

         Δζn  = [P0(1+1/GSNR
2)/2hνFB]-1/2                            (29) 

where, as soon as it is GSNR>>1, the CFM contribution becomes 
negligible and this term can be dropped from Eq.29.  
With the data of Sect. II, we find the maximum measurable alpha 
by equating Δζn to π/2-atan α, and the result is αmax=700, a very 
high limit indeed. 

CONCLUSIONS  

We have pointed out the usefulness of the FM channel in the 
measurements with SMI, and evaluated the theoretical 
improvement obtained in signal amplitude and SNR respect to 
the AM channel. Some configurations to implement the FM-to-
AM conversion have been discussed and finally we have hinted 
several applications with improved performance. 
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