REVIEW ARTICLE

Laser diode self-mixing technique for sensing applications

Guido Giuliani¹, Michele Norgia¹, Silvano Donati¹ and Thierry Bosch²

¹ Dipartimento di Elettronica, Università di Pavia, Via Ferrata 1, I-27100 Pavia, Italy
² Laboratoire d’Électronique, ENSEEIHT-LEN7, 2, rue Charles Camichel, BP 7122, F-31071 Toulouse Cedex 7, France

E-mail: giuliani@ele.unipv.it and bosch@len7.enseeiht.fr

Received 1 August 2002
Published 4 November 2002
Online at stacks.iop.org/JOptA/4/S283

Abstract
The laser diode self-mixing (or feedback) interferometric technique is reviewed as a general tool for remote sensing applications. The operating principle is outlined, and the attainable performance is compared to conventional coherent detection. Applications to metrology and to new sensing schemes are described, experimental results are reported and the overall performance of the sensors are assessed.

Keywords: Laser diode interferometry, self-mixing, remote sensing, displacement measurement, velocity measurement, distance measurement, target ranging, vibration measurement, optical feedback

1. Introduction

Laser interferometry is a well-established technique, widely used in the industrial and laboratory environments to measure displacement, velocity (of both solid targets and fluids), vibration and distance. Applications have flourished such as mechanical metrology, machine-tool control, profilometry and vibrometry. The usual techniques rely on an external interferometer, i.e., an optical transducer made up of lens, prisms and mirrors, which is read-out using laser light or white light. This is the case for the well-known Michelson and Mach–Zehnder interferometers.

Later, a new technique appeared, in which a fraction of the light backreflected or backscattered by a remote target is allowed to re-enter the laser cavity, thus generating a modulation of both the amplitude and the frequency of the lasing field. In this approach, equivalently called self-mixing, feedback or induced-modulation interferometry, the laser source acts as a sensitive detector for the path length $2ks$ (where $k = 2\pi/\lambda$, and s is the target distance) travelled by the light to the target and back, exploiting so-called injection–detection [1]. The first demonstrations of this principle used gas lasers to detect the Doppler shift caused by a moving remote reflector [2]. Turning point experiments were those reporting the first complete self-mixing interferometer/vibrometer [3] and the use of a laser diode (LD) as a source/detector [4].

Remote sensing applications based on the self-mixing effect in low-cost commercial Fabry–Perot (FP) LDs have appeared in the scientific literature since 1986 [4, 5], demonstrating the feasibility of velocity, distance and displacement measurements [4–6].

Advantages of the self-mixing sensing scheme are:

1. no optical interferometer external to the source is needed, resulting in a very simple, part-count-saving and compact set-up;
2. no external photodetector is required, because the signal is provided by the monitor photodiode contained in the LD package;
3. the sensitivity of the scheme is very high, being a sort of coherent detection that easily attains the quantum detection regime (i.e. sub-nm sensitivity in path length is possible);
4. successful operation on rough diffusive surfaces can be achieved;
5. information is carried by the laser beam and it can be picked up everywhere (also at the remote target location).
2. Operating principle

Optical feedback in LDs is a topic which has been studied for a long time, from both the theoretical and experimental viewpoints. Earlier works [7, 8] focused on a classification of different feedback regimes, on optical spectrum modification, and on RF noise characteristics of back-injected LDs. More recently, sensing-oriented experimental set-ups have been devised and suitable theoretical analyses proposed [6, 9].

2.1. Basic principle of injection–detection

A conventional LD interferometric self-mixing configuration is shown in figure 1. It is equivalent to a three-mirror cavity, where \(P_s = P_0/A \) is the power backdiffused or backreflected by the remote target, with \(P_0 \) the emitted power and \(A > 1 \) the power attenuation of the external cavity. A simple interpretation for injection–detection is the following [1]: the small backreflected field phase \(E_r \) re-enters the laser cavity and it adds to the lasing field phase \(E_l \). The phase of \(E_r \) is \(\phi(t) = 2ks(t) \), where \(k = 2\pi/\lambda \) and \(s(t) \) is the distance of the remote target. Hence, the lasing field amplitude and frequency are modulated by the term \(2ks \). Thus the FM term is \(\sin(2ks) \) and the AM term is \(\cos(2ks) \). This detection scheme very closely resembles the well-known homodyning at radio frequencies. From the two quadrature signals, the interferometric phase \(\phi = 2ks \) can be retrieved without ambiguity, and a measurement of the target displacement is possible [3].

2.2. Theory for self-mixing in a laser diode

The simple treatment illustrated above applies conveniently to gas lasers, but for the case of a single-mode FP LD some changes are needed. First, in LDs the frequency modulation term cannot be detected by heterodyning, because of the large linewidth of these sources (typically between 1 and 30 MHz). This implies that in the self-mixing configuration only one interferometric channel is available, as opposed to conventional external interferometers that provide two interferometric signals which are in quadrature. Second, the intrinsic non-linear nature of the semiconductor active medium (that couples both optical gain and refractive index to the injected carrier density) makes the amplitude modulation term different from the cosine function.

A complete analysis of the LD with optical feedback can be performed by using the equations first derived by Lang and Kobayashi [10]. To summarize the effects of the optical delayed feedback, we observe that the backreflected light interferes with the light already present in the cavity. Depending on the delay and on the phase of the backreflected light, the LD threshold condition is varied; thus the emitted power changes as the pump current is held constant. The change in the threshold implies a change in the actual LD carrier density; as a consequence, the wavelength emitted by the LD subject to backreflections is also slightly varied [8].

As the self-mixing effect involves a change in carrier density, the characteristic timescale of this phenomenon is comparable to the carrier LD lifetime, i.e. it is in the sub-nanosecond range.

An analytical steady-state solution, which is of interest for sensing applications, can be easily found [6, 8, 9], leading to the following general expression for the power emitted by the LD:

\[
P(\phi) = P_0[1 + mF(\phi)]
\]

where \(P_0 \) is the power emitted by the unperturbed LD, \(m \) is the modulation index and \(F(\phi) \) is a periodic function of the interferometric phase \(\phi = 2ks \), of period \(2\pi \). The modulation index \(m \) and the shape of the function \(F(\phi) \) depend on the so-called feedback parameter \(C \) (after [8]):

\[
C = \frac{k_2^2\sqrt{1 + \alpha^2}}{L_{las}n_{las}}
\]

where \(\alpha \) is the LD linewidth enhancement factor, \(L_{las} \) is the laser cavity length, \(n_{las} \) is the cavity refractive index and \(k_2 \) is given by:

\[
k_2 = \frac{2\pi}{\lambda}\frac{1 - R}{L_{las}R}
\]

where \(\lambda \) accounts for a mismatch between the reflected and the lasing modes, \(A \) is the total optical power attenuation in the external cavity and \(R_2 \) is the LD output facet power reflectivity (see figure 1). Thus, the value of the \(C \) parameter depends on both the amount of feedback and, interestingly, on target distance \(s \). The \(C \) parameter is of great importance, because it discriminates between different feedback regimes:

- For \(C \ll 1 \), we have the very weak feedback regime. The function \(F(\phi) \) is a cosine (as in gas lasers) and the modulation index \(m \) is inversely proportional to \(\sqrt{C} \).
- For \(0.1 < C < 1 \), we have the weak feedback regime. The function \(F(\phi) \) gets distorted, showing a non-symmetrical shape (see figure 2(a)); the modulation index \(m \) is again inversely proportional to \(\sqrt{C} \).
- For \(1 < C < 4.6 \), we have the moderate feedback regime. The function \(F(\phi) \) becomes three-valued for certain values of the phase \(\phi \), i.e. the system is bistable, with two stable states and one unstable (see figure 2(b)). The modulation index \(m \) increases for decreasing \(\sqrt{C} \), but it is no longer inversely proportional to it. The interferometric signal becomes sawtooth-like and exhibits hysteresis.
- For \(C > 4.6 \), we have the strong feedback regime. The function \(F(\phi) \) may become five-valued (see figure 2(c)), and we experimentally tested that not all the specimens of FP LDs remain in the self-mixing regime; rather, in some cases the LD enters the mode-hopping regime and interferometric measurements are no longer possible.

Figures 2(a)–(c) show calculated shapes of the function \(F(\phi) \) for three different feedback regimes. Figure 3 reports experimental time-domain photocurrent self-mixing signals obtained when the phase \(\phi \) of the backreflected field is sinusoidally varied, i.e. by moving the remote target by means...
Laser diode self-mixing technique for sensing applications

Figure 2. Calculated waveforms of the function $F(\phi)$ for different values of the C parameter. (a) $C = 0.7$; (b) $C = 3$; (c) $C = 10$. In (b), the segment AB is unstable. When the system is in A and ϕ is further increased, it jumps down along the broken line. When the system is in B and ϕ is further decreased, it jumps up.

Figure 3. Experimental self-mixing signal waveforms obtained for different values of the total optical attenuation A. Upper left trace: loudspeaker drive signal at 657 Hz, 1.2 μm/div. (a) $A \approx 2 \times 10^8, C \ll 1$; (b) $A \approx 8 \times 10^6, C \approx 1$; (c) $A \approx 4 \times 10^5, C > 1$.

of a loudspeaker. The resulting self-mixing signal is a periodic function of ϕ and a complete interferometric fringe appears each time the phase is varied by 2π. Consequently, the fringe period corresponds to a target displacement of $\lambda/2$.

For different applications of the self-mixing configuration, it is interesting to analyse the dependence of signal amplitude on the parameters L_{las} (LD cavity length), s (target distance) and A (optical attenuation in the external cavity) [11]. As the signal amplitude is inversely proportional to \sqrt{A}, it is useful to evaluate the maximum allowable total optical attenuation that ensures a good SNR (signal-to-noise ratio), and to determine limit operation conditions for sensing applications.

Starting from theoretical results presented in [6, 8], an analytical expression for the amplitude of the photocurrent self-mixing signal S_I can be calculated as follows:

$$S_I = \eta_{pd} \frac{q}{h\nu} P_0 \frac{2\pi \tau_p}{\tau_{las}} \left(\frac{N_0}{N_{th}} \right) - 1$$

$$= \eta_{pd} \frac{q}{h\nu} P_0 \frac{2\pi \tau_p}{\tau_{las} \sqrt{A}} \left(1 - \frac{N_0}{N_{th}} \right) \left(\frac{I}{I_{th}} - 1 \right)$$

(3)

where $\eta_{pd} = \eta_{coupl} \eta_q$ is the product of monitor photodiode coupling efficiency η_{coupl} and quantum efficiency η_q, τ_p is the laser photon lifetime, τ_{las} is the laser round-trip time, I and I_{th} are, respectively, operating current and threshold current and the ratio N_0/N_{th} of transparency carrier density over threshold carrier density has a typical value of 0.8. The amplitude S_I is intended as half the peak-to-peak signal swing that one obtains when the phase of the backreflected field is varied by at least 2π. Expression (3) is valid as long as the condition
C ≤ 1 is fulfilled. Figure 4 reports the calculated self-mixing photocurrent signal amplitude as a function of optical power attenuation A for different diode laser sources. Target distance is $s = 1$ m and all sources are supposed to have the following common parameters: $\lambda = 850$ nm, $P_0 = 10$ mW (except for the VCSEL, that emits 3 mW), $\eta_{pd} = 0.016$; $\alpha = 5$; $\kappa = 0.5$. Other parameters are as follows:

- FP: $L_{las} = 350 \mu$m; $\tau_p = 1.6$ ps; $R_2 = 0.35$.
- DFB (distributed feedback laser) 1: $\kappa L = 2$ (with κ corresponding to grating coupling factor [7]); $L_{las} = 350 \mu$m; $\tau_p = 1.34$ ps; R_2 (equivalent) = 0.25.
- DFB 2: $\kappa L = 5$; $L_{las} = 350 \mu$m; $\tau_p = 2.25$ ps; R_2 (equivalent) = 0.87.
- ECL (external cavity laser) 1: hybrid distributed Bragg reflector laser (HDBR), made of an anti-reflection coated LD and a fibre Bragg grating [26], with $L_{las} = 0.01$ m; $\tau_p = 1.9$ ps; $R_2 = 0.35$.
- ECL 2: HDBR laser with $L_{las} = 0.1$ m; $\tau_p = 1.9$ ps; $R_2 = 0.35$.
- ECL 3: with bulk grating in Littrow configuration, with $L_{las} = 0.1$ m; $\tau_p = 2.5$ ps; $R_2 = 0.8$.
- VCSEL (vertical cavity surface emitting laser): $L_{las} = 1.2 \mu$m; $\tau_p = 1.4$ ps; $R_2 = 0.992$, $P_0 = 3$ mW.

A wide range of linear operation ($S_l \propto 1/\sqrt{A}$) can be achieved in the regime $C < 1$ (thin lines), thus making the self-mixing configuration a good candidate for backreflection or backscattering measurement [26]. Also shown in figure 4 are the regions for which $C \geq 1$ (thick curve), that are important for at least two reasons. First, if one is interested in backreflection measurement, the region with $C \geq 1$ places a lower attenuation limit for linear operation, because the function $F(\Phi)$ is no longer sinusoidal (i.e. high-order harmonics appear) and eventually signal saturation shows up due to increased feedback [26]. Second, this region is very useful for displacement measurement, because the signal exhibits fast switchings every $\lambda/2$ target displacement (see section 3.1), and this helps in easily detecting the displacement without direction ambiguity [6].

To assess the attainable SNR, it is assumed that the measurement is limited by LD RIN (relative intensity noise) [7] and the photocurrent noise can be expressed as

$$I_n^2 = 2q \eta_{pd} \frac{g}{h} F P_0 B$$

where B is the measurement bandwidth and F is the excess noise factor with respect to ideal LD RIN (typically $F = 2$). Noise levels are also plotted in figure 4 for three different values of measured bandwidth (1, 10 and 100 Hz). It can be deduced that, for a FP laser, an optical attenuation $A \approx 10^{12}$ is well tolerated, still allowing for 100 Hz signal bandwidth. The high sensitivity of the self-mixing scheme is achieved thanks to the coherent detection principle on which it is based.

From figure 4 it can be noted that the largest self-mixing signal is given by FP lasers and by DFB lasers with small grating coupling factor. These lasers are best suited for operation in the hysteresis regime ($C > 1$), because they can tolerate higher attenuation (up to 10^7), and this allows proper operation even on diffusive targets. The performance of DFB lasers strongly depends on the grating coupling factor κL, that influences both the photon lifetime τ_p and the equivalent output mirror reflectivity R_2 [7]. For a given optical attenuation, the signal provided by ECL lasers can be up to three orders of magnitude smaller than those of FP and DFB. This is due to the much longer cavity of ECLs (see equation (3)). Also, ECL lasers require a much larger optical feedback strength to enter the moderate feedback regime with $C > 1$. The VCSEL gives a smaller signal with respect to FP lasers, but the attainable SNR is comparable.

It is interesting to assess the optimal operation condition of the self-mixing detection scheme with respect to injected LD current. This can be deduced from figure 5, that reports calculated self-mixing signal amplitude and SNR when $C = 1$ for a FP laser with 20 mA threshold. Just at threshold, the SNR exhibit a maximum; then it rapidly decreases to a minimum and it increases again with injected current. It could be argued that operation at or just above threshold is very favourable. However, in practice, this operating point might not be suitable for two reasons. First, achieving shot-noise-limited operation using an op-amp transimpedance amplifier at such reduced power levels requires a very large feedback resistance, thus limiting the available bandwidth. Second, proper self-mixing operation is generally observed when the LD operates on a single longitudinal mode or, at least, it exhibits a side-mode suppression larger than 7–8 dB; this condition is not satisfied if the laser is operated just above threshold. Hence, from figure 5 it is concluded that optimum operation with large SNR is achieved by increasing the LD injection current.

As a conclusion to the theoretical analysis of the self-mixing effect in LDs, some remarks are in order:

- The asymmetry in the shape of the function $F(\phi)$, when $C > 0.5$, allows a clear discrimination of the target direction of motion. It is a crucial point: this peculiar characteristic of self-mixing in LDs makes non-ambiguous interferometric displacement measurement possible using a single interferometric channel (see section 3.1), i.e. one does not need two quadrature signals as is the case for conventional interferometry.
2.3. Comparison with conventional coherent detection

After showing that the self-mixing configuration is a sort of homodyne (i.e. coherent) detection, a question arises about a comparison of its performance to that of the conventional coherent detection scheme, commonly used in interferometric applications. To this purpose, let us consider the general coherent detection scheme shown in figure 6 and calculate the useful signal as: \(I_\text{isc} = \eta s \frac{q q}{2 \nu B} \), where \(\eta s \) is the photodiode quantum efficiency. The quantum-limited noise term is: \(I_\text{N} = 2q I_0 B = 2q \eta s \frac{q q}{4 \nu B} \). Thus, the SNR for the conventional coherent detection is given by

\[
(S/N)_{COH} = \frac{I^2_{isc}}{I^2_N} = \eta s \frac{P_0}{2h\nu B} = \eta s \frac{P_0/A}{2h\nu B}.
\]

For the self-mixing case, considering the same emitted power \(P_0 \), the SNR can be calculated from equations (3) and (4) as

\[
(S/N)_{SM} = \frac{I^2_{isc}}{I^2_N} = \eta s \frac{P_0}{2h\nu B} \frac{2 \nu B}{2\nu B} \frac{2 \nu B}{2\nu B} \frac{(1 - R_2)^2 X^2}{\tau^2_{las} R_2}.
\]

where \(X = (1/N_0/N_0)/(1/N_0 - 1) \). The ratio of the SNRs obtained for the two configurations is

\[
\frac{(S/N)_{SM}}{(S/N)_{COH}} = \frac{\eta s}{\tau^2_{las} R_2} \frac{2 \nu B}{2\nu B} \frac{2 \nu B}{2\nu B} \frac{(1 - R_2)^2 X^2}{(1 - R_2)^2 X^2} = 0.609 \eta s \frac{1.21 \times 10^{-2}}{1.21 \times 10^{-2}} = -19.1 \text{ dB}
\]

where the following typical values have been used: \(\epsilon = 0.5 \); \(\tau_p = 1.6 \text{ ps} \); \(\tau_{las} = 8 \text{ ps} \); \(R_2 = 0.35 \); \(X = 1.13 \); \(\eta s \text{coupl} = 0.02 \). Hence, it can be concluded that the SNR for the self-mixing configuration is indeed worse than that of conventional interferometry, but most of the SNR loss is due to the poor collection efficiency of the monitor photodiode. This is the only price one has to pay for the large reduction in complexity offered by the self-mixing approach.
a cooperative target and a really accurate alignment procedure. Conventional displacement measuring interferometers requires aligned and it is effective even for the case of very small displacements larger than a few mm, because the speckle distribution may change randomly, thus causing signal fading. This problem is obviously common also to conventional interferometric techniques, which in turn are faulty and not reliable for these applications. However, the self-mixing approach in conjunction with an appropriate ‘bright’-speckle tracking system allowed us to solve this problem, and was demonstrated as the first interferometer capable of working satisfactorily even on a rough surface [15].

The method employed to avoid amplitude signal fading is based on a slight change of the laser spot position on the target in the transversal direction [15]. The spot movement is obtained by means of a pair of piezo-actuators holding the focusing lens, that controls the deflection angle of the laser beam (the experimental arrangement is shown in figure 8). The piezo-actuators are driven by two square waves at the same frequency, with a 90° phase shift, so that the spot position draws a square path on the target, whose extension is set to be much less than the spot size (a few micrometres). A closed-loop control circuit reads the amplitude of the self-mixing signal (which depends on the strength of the optical feedback, see figure 4) and actively changes the DC bias voltage of the piezo-actuators so to obtain a transversal translation of the LD spot in the direction of a bright speckle. Hence, the interferometer is dynamically locked to the local maximum of a bright speckle.

Figure 8 reports experimental results that confirm the effectiveness of the speckle-tracking method. The graphs report experimentally obtained probability density functions (PDF) of the light intensity backscattered by a paper target, as measured from self-mixing signal amplitude, exploiting its dependence on backscatter strength (see figure 4). Target displacement is intended to be measured by fringe counting in the moderate feedback regime (C > 1, sawtooth-like signal). The vertical broken lines correspond to the case C = 1, and hence it sets the threshold for proper measurement conditions. For figure 9(a) the speckle tracking system was off and for this case the area of the graph on the left hand side of the broken line is such that there is 10% probability of getting a self-mixing signal with a value of the C parameter smaller than unity, which can preclude correct displacement measurement. Figure 9(b) reports data obtained with the speckle-tracking system turned on, and it can be noticed that the probability of faulty operation dropped to below 0.5%. Actual displacement measurements were successfully performed on white paper targets over 0.5 m travel.

3.1.2. Operation on diffusive targets. Operation of conventional displacement measuring interferometers requires a cooperative target and a really accurate alignment procedure. Typically, the target is a corner-cube mounted on the moving object under test. Though this is reluctantly accepted after all by the users’ community, it would be much better to be able to work directly on a diffuser surface as found in the normal workshop environment, with no invasiveness nor the need to keep optical surfaces clean. This chance is actually offered by the self-mixing configuration because it is intrinsically self-aligned and it is effective even for the case of very small optical backreflections (see figure 4). However, with diffusive targets practical limitations of operation can occur due to speckle-pattern effects [28], especially for the case of target displacements larger than a few mm, because the speckle distribution may change randomly, thus causing signal fading. This problem is obviously common also to conventional interferometric techniques, which in turn are faulty and not reliable for these applications. However, the self-mixing approach in conjunction with an appropriate ‘bright’-speckle tracking system allowed us to solve this problem, and was demonstrated as the first interferometer capable of working satisfactorily even on a rough surface [15].

The method employed to avoid amplitude signal fading is based on a slight change of the laser spot position on the target in the transversal direction [15]. The spot movement is obtained by means of a pair of piezo-actuators holding the focusing lens, that controls the deflection angle of the laser beam (the experimental arrangement is shown in figure 8). The piezo-actuators are driven by two square waves at the same frequency, with a 90° phase shift, so that the spot position draws a square path on the target, whose extension is set to be much less than the spot size (a few micrometres). A closed-loop control circuit reads the amplitude of the self-mixing signal (which depends on the strength of the optical feedback, see figure 4) and actively changes the DC bias voltage of the piezo-actuators so to obtain a transversal translation of the LD spot in the direction of a bright speckle. Hence, the interferometer is dynamically locked to the local maximum of a bright speckle.

Figure 9 reports experimental results that confirm the effectiveness of the speckle-tracking method. The graphs report experimentally obtained probability density functions (PDF) of the light intensity backscattered by a paper target, as measured from self-mixing signal amplitude, exploiting its dependence on backscatter strength (see figure 4). Target displacement is intended to be measured by fringe counting in the moderate feedback regime (C > 1, sawtooth-like signal). The vertical broken lines correspond to the case C = 1, and hence it sets the threshold for proper measurement conditions. For figure 9(a) the speckle tracking system was off and for this case the area of the graph on the left hand side of the broken line is such that there is 10% probability of getting a self-mixing signal with a value of the C parameter smaller than unity, which can preclude correct displacement measurement. Figure 9(b) reports data obtained with the speckle-tracking system turned on, and it can be noticed that the probability of faulty operation dropped to below 0.5%. Actual displacement measurements were successfully performed on white paper targets over 0.5 m travel.
Laser diode self-mixing technique for sensing applications

Figure 9. Experimentally obtained PDF of the backscattered light intensity from a paper target placed at \(s = 0.5 \) m from the LD. Statistics is obtained by sampling different transversal positions of the target. The horizontal axis is scaled so that the condition on the feedback parameter \(C = 1 \) corresponds to unity (a suitable LD has been used, capable of operation also in the regime \(C \gg 1 \)). Hence, the vertical broken line sets the threshold for correct displacement measurement by fringe counting. Grey bars: experimental data. Thick curve: theoretical exponential PDF [28]. Dotted curve: simulation [15]. (a) Speckle-tracking system turned off; (b) speckle-tracking system turned on.

3.1.3. Comparison with He–Ne Michelson interferometer. Although the self-mixing technique has proven very effective for displacement measurements, an aspect still remains for which conventional displacement interferometers based on He–Ne lasers are superior to those based on LDs: the precision. In fact, a stabilized He–Ne laser has a long-term wavelength stability of \(10^{-6} \), while a temperature-controlled FP LD can, at present, guarantee only a short-term stability of \(10^{-5} \). The intrinsic possibility of longitudinal mode-hopping prevents LDs from having a long-term stability better than \(10^{-4} \). However, we experimentally demonstrated that a visible emission DFB LD manufactured by SDL Inc., USA, performed well in the self-mixing regime. Hence, should this type of LD become commercially available, LD-based interferometers could match the accuracy of He–Ne ones.

3.2. Velocity measurement

The measurement of the speed of a target can be trivially performed by differentiating the displacement signal obtained as described in section 3.1. Actually, velocity measurements were performed using the self-mixing effect well before the non-ambiguous interferometric measurement was demonstrated [4, 5]. This probably happened because the ‘velocity’ signal is more directly interpreted as being the result of the coherent mixing, within the LD cavity, of the lasing field and the Doppler-shifted light backscattered by the remote target. In fact, for a target moving with constant velocity \(v \), the self-mixing signal can be written as

\[
l_{SM}(t) = I_0[1 + m F(\phi)] = I_0[1 + m F[2\pi(2v/c)t]]
\]

where the term within the square brackets is the well-known Doppler frequency shift (recall that \(F(\phi) \) is a \(2\pi \)-periodic function). Also in this case, the asymmetry of the function \(F(\phi) \) helps in recovering the velocity sign.

What may be of greater interest is the measurement of the speed of a rotating target, such as a disc or a drum (see figure 10), or, more generally, of a surface whose velocity is not parallel to the LD beam. In this case, the Doppler shift description still applies and the measured speed is the component parallel to the light wavevector. Some inaccuracies may arise due to speckle effects, which are of particular importance for this case, since the portion of the target illuminated by the LD light is continuously changing. As we can see in figure 11(a), the experimental time-domain optical-power waveform is strongly altered by speckle effects (i.e. it is randomly amplitude-modulated). This makes it difficult to accurately reconstruct the motion law of the target without appropriate signal processing. As shown in figure 11(b), by means of real-time FFT signal processing directly applied to the sawtooth-like self-mixing waveform, we were able to determine the Doppler beat frequency \(f_b \), so as to calculate the component of the speed of the target parallel to the laser beam axis. Experimental results on velocity measurements are shown in figure 12. For velocities up to \(200 \) km h\(^{-1} \) (i.e. \(55.5 \) m s\(^{-1} \)), a maximum relative error of 5% has been obtained. This error can be reduced by increasing the time integration constant of the FFT signal processing.

This method has been applied to measure the speed of a car by aiming the laser beam at the road surface. In this case, speckle effects are accompanied by random diffusivity.

Figure 10. Arrangements for measurement of the speed of rotating targets. (a) Drum; (b) disc.
Measurement of vibrations of amplitude much larger than \(\lambda/2 \) can be linearly transduced into an electrical signal. Also, in [32] it is shown that, by adding an active phase-tracking system, the maximum measurable vibration amplitude can be as large as 200 \(\mu \text{m} \). The ultimate sensitivity is set by the quantum noise associated with the detected signal, which can be expressed [1] in terms of NED (noise equivalent displacement) as:
\[
\text{NED} = \frac{\lambda}{2\pi} / (\text{SNR}),
\]
where SNR is the SNR of the self-mixing signal (see equation (5)). The experimentally obtained sensitivity is 10 pm Hz\(^{-1/2}\) [32], a remarkable figure indeed.

3.4. Distance measurement

Another advantage of a LD-based self-mixing scheme over conventional interferometric configurations is the ability to perform target ranging in a very simple way. The absolute distance of a stationary target can be measured by performing a modulation of the LD emission wavelength with a triangular waveform. The LD power will obviously be triangularly modulated and, in addition, a self-mixing interferometric signal will be superimposed on it, due to the fact that the wave number \(k = 2\pi/\lambda \) is changed by the amount \(\Delta k = -2\pi \Delta \lambda / \lambda^2 \) [17, 18]. By counting the number \(N \) of interferometric fringes occurring for a known wavelength variation \(\Delta \lambda \), the target distance is obtained from
\[
s = \frac{\lambda^2}{2\Delta \lambda} N. \quad (9)
\]
A typical example of self-mixing waveform for this case is shown in figure 14, together with its analogue derivative, showing the pulses to be counted. The resolution of the counting method is limited by the quantization error to \(\Delta s = \pm \lambda^2 / 2 \Delta \lambda \). Using a state-of-the-art multi-electrode DBR structure, continuously tunable up to 375 GHz, an accuracy of 0.5 mm at 0.6 m distance was achieved [19]. This can be compared to 4 mm accuracy obtained using a conventional low-cost FP LD with 36 GHz optical frequency shift.

Accuracy improvement can be obtained by measuring the ‘beat frequencies’ of the self-mixing signal shown in figure 14, and by using the formula:
\[
s = \frac{\lambda^2}{4 \Delta \lambda} (f_{\text{up}} + f_{\text{down}}) \quad (10)
\]
where \(f_{\text{up}} \) refers to the raising ramp and \(f_{\text{down}} \) to the decreasing one. In this case, the injection current is modulated by a pre-distorted triangular signal in order to make the wavelength sweep linear, thus avoiding non-linearities caused by thermal effects. By using this method, the resolution can be improved up to a factor of 8 and an overall accuracy of \(\pm 1.5 \text{ mm} \) is achieved in a 1–2 m range using a FP LD [18].

A comparison is worthwhile with other ranging techniques such as time-of-flight [36], triangulation [36, 37] and absolute distance interferometry [38]. Commercially available instruments based on time-of-flight methods (telemeters) are best suited for long-range applications: distances from tens of cm to tens of km, with resolutions (measurement error) from a few mm to a few m. The triangulation technique better applies to short-range measurements with limited dynamic: distances from a few cm to a few m, with resolutions in the...
Figure 12. Experimental calibration of velocity measurement.

Figure 13. Principle of linear measurement of target vibrations in the moderate feedback regime by locking the interferometer phase to half-fringe. The vertical axis represents the power emitted by the LD; the horizontal axes represent interferometric phase and target displacement, respectively.

Figure 14. Self-mixing signal for absolute distance measurement, obtained for a 0.8 mA current modulation in a FP LD. The analogue derivative with the pulses to be counted is also shown.

The fringe-counting self-mixing technique offers a dynamic range larger than triangulation, although well below that of time-of-flight instruments. Its accuracy is at least one order of magnitude better than time-of-flight techniques and it is worse than that of conventional absolute distance interferometry. From the above discussion, it appears that target ranging by means of self-mixing is a technique with average performance, offering the following advantages:

(i) a very simple optical set-up;
(ii) it allows the use of low-power low-cost LDs;
(iii) it requires relatively straightforward signal processing.

3.5. Discussion

We have shown that the self-mixing technique is a powerful tool for remote sensing applications, whose main advantages are the extreme simplicity of the set-up and the low cost. This is surely the cheapest coherent interferometer that can be built. The technique is also reliable for targets with diffusive surfaces and it is the only approach that can lead to an ‘integrated multiple sensor’, i.e. a single apparatus capable of performing four different metrology measurements (displacement, velocity, vibration and distance).

From the authors’ experience in this field, it is confirmed that the different types of sensors illustrated above are generally of straightforward implementation. Significant points in sensor development are the following.

(1) Choice of LD. As already stated, most single transversal- and longitudinal-mode LDs perform well in the self-mixing configuration. However, some LD specimens are superior to others for certain applications, especially with regard to mode-hopping, tolerance to high optical feedback levels, coherence length, beam visibility and safety considerations.

(2) Optical feedback strength. This point is two-fold. In fact, when the target is diffusive, it may happen that only a small optical feedback can be obtained, hence yielding a small interferometric signal with small SNR. A solution to this problem can be the choice of a proper optical system for focusing/collimating LD light on a target. Objective lenses are particularly indicated for
this case, but also single lenses and GRIN lenses can be used. Obviously, focusing on a target gives stronger optical feedback, although at the price of a reduced depth of field. When moderate optical feedback is necessary to obtain an asymmetry in the interferometric waveform, the dependence of the C parameter on target distance (see equation (2)) can be exploited by increasing the distance between LD and target, and using a two-lens pair for beam collimation and subsequent focusing. When the target is reflective (mirror or corner-cube) the user can avoid excessive optical feedback into the LD by using a fixed or a variable optical attenuator. In particular, the use of a liquid crystal variable attenuator is viable, and the feedback level can thus be automatically adjusted by a suitable control circuit that keeps the self-mixing signal amplitude constant [39].

(3) Sensitivity to ambient conditions. The main concern that may arise about the use of LDs is generally related to environmental temperature changes that can influence the LD operating temperature and cause mode hops. Although self-mixing sensors are based on interferometric principles, mode hops that happen seldom do not, in general, negatively affect the measurement. Most of the sensors illustrated above were successfully implemented without the use of a LD temperature controller, with the aim of reducing sensor cost and power consumption. Mode hops (i.e. uncertainty in the emitted wavelength) do affect the precision of self-mixing sensors. However, as stated in section 3.1.3, overall precisions better than 0.1% are achievable.

Of maybe more concern in specific cases are the effects of unwanted spurious reflections, generally caused by interfaces of optical components such as lenses, beamsplitters, mirrors, etc. Spurious reflections or backscattering of even very small amounts should be avoided, because the high sensitivity of the self-mixing detection scheme

Figure 15. (a) Graph reporting the number of self-mixing papers published in peer-reviewed international scientific journals plotted against year up to 2001. Source: ISI—Institute for Scientific Information [35]. (b) Classification of the papers of (a) into six categories.
may result in disturbances superimposed on the desired signal. To this end, critical optical parts should be anti-reflection-coated or, at least, they should be misaligned with respect to the beam path.

4. Other remote sensing applications

A variety of clever remote sensing applications based on self-mixing has also been demonstrated, among which we have: characterization of micro-electromechanical-system (MEMS) silicon devices (for which the ability to measure the displacement of a rough surface with holes, having a void ratio of 50%, is amazing) [20]; proposal of a novel hybrid micromechanical gyroscope with self-mixing interferometric readout [21]; velocity measurements in fluids, including in vivo blood measurements [22]; discrimination and recognition of rough surfaces [23]; measurement of optical isolators placed into a LD package [24]; and studies on the possibility of using multi-mode LDs [25].

5. Conclusion

As a final remark, a discussion about the scientific popularity of the self-mixing sensing technique is worthwhile. This can be done referring to figure 15(a), that reports the number of papers published in international peer-reviewed scientific journals per year. The source is ISI—Institute for Scientific Information [35], and the research has been performed by searching for keywords related to self-mixing in paper titles, and subsequently listing only those papers oriented to sensing applications. It is clearly shown that, since the late 1980s, papers on the self-mixing effect in LDs have flourished, with a notable rapid increase in recent years. This positive trend confirms that self-mixing is nowadays a well-known and well-established technique among the international scientific community. Figure 15(b) reports the classification of the above cited papers into six categories. This classification shows a good balance between the four main sensing schemes and illustrates how the self-mixing community is inclined to practical applications.

In conclusion, in this paper the LD self-mixing interferometric method has been reviewed and its applications to remote sensing have been analysed and commented on. This is a very promising technique that will allow the development of several useful and practical instruments.

Acknowledgments

The authors would like to thank Noël Servagent for his contribution to this work. Part of the research results described here were achieved within the EU Brite–Euram SELMIX Project.

References

[34] Scalise L 2002 Self-mixing feedback laser Doppler vibrometry 5th Int. Conf. on Vibration Measurements by Laser Techniques: Advances and Applications ed E P Tomasini Proc. SPIE 4827 374–84

