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External PhotoemissionExternal Photoemission

Steps of photodetection in semiconductors

• absorption of photons in the material (      α, P=P0 exp -αL)

• production of charge carriers (      hν>Eg

λs [µm] = hc/E = 1.24 / E[eV] ),

• drift of charge carriers under an internal electric field
(       junction, high µ)

• collection of charge carriers at the ohmic contacts    
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MaterialsMaterials andand structuresstructures

• single  semiconductors   Si, Ge, Se, etc. 
• binary compounds     GaAs, InSb, PbS, PbSe, etc., 
• ernary compounds GaAlAs, InGaP, HgCdTe, PbSnTe  
• quaternary compounds InGaAsP, etc. 
energy gap Eg: from several eV to a few 10meV, 
spectral range (or threshold λs): from the UV to the far IR.

Structures:

photodiodes (pn, pin, ms and avalanche), 
bipolar and unipolar phototransistors, 
photo-SCR, 
photoresistances
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Features of semiconductor detectorsFeatures of semiconductor detectors

PRO’s

•compact size and flexibility of geometry 
•low bias voltage 
•spectral range fromdeep UV to far IR
• high peak quantum efficiency
•uniformity  of performance parameters
• excellent ruggedness wide temperature range
• excellent mean time to failure (MTTF)
• space  and hostile  ambient  qualification
• generally low cost

CON’s

• very large areas  difficult
• no single-photon  capability, GB not the best
• temperature dependence
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PhotodiodePhotodiode’’ss familyfamily

A sample of  popular 
semiconductor 

photodetectors: single-
element photodiodes in 

metal and ceramic 
packages, linear arrays 

of photodiodes and 
high frequency SMD 

photodiodes with 
integrated preamplifier
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pnpn--junction Photodiodejunction Photodiode
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Absorption coefficientAbsorption coefficient
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Refraction indexRefraction index ofof semiconductorssemiconductors
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Reflection lossReflection loss atat entranceentrance windowwindow
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Spectral sensitivitySpectral sensitivity (UV .. NIR)(UV .. NIR)
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Spectral sensitivitySpectral sensitivity (MIR .. FIR)(MIR .. FIR)
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pnpn--junction Characteristicsjunction Characteristics
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DarkDark currentcurrent andand ideality factorideality factor
((advanced topicadvanced topic))

From Shockley standard analysis of the pn-junction, ideality factor is unity (n=1) 
and reverse current Id is :

Id = A e ni
2 [(Dp/LpND)+(Dn/LnNA)] 

≈ A e ni
2 (Dp/LpND)      (for NA>>ND)

where A=PD active area, Dn,p=minority diffusion constants, Ln,p=diffusion 
lengths, ND,A=doping concentrations of donor/acceptor; ni, intrinsic concentration 
of charge carriers is:

ni
2 = NC NV exp -Eg/kT ∝ T3 exp-Eg/kT,

Taking for (D/L) a dependence Tγ from temperature, it is:

Id ∝ T3+γ exp -Eg/kT,        (independent from V)

The, temperature coefficient of the dark current Io=Id is:

dIo /Io dT = [3+γ +Eg/kT] / T ≈ 0.33 [3+γ +Eg/kT]   (%/°C, 300 K)

These eqs. apply at weak current levels or when the intrinsic concentration of 
charge carrier ni is not too low. 



PHOTODIODES 13

DarkDark currentcurrent andand ideality factorideality factor
((advanced topicadvanced topic, 2), 2)

Another contribution is generation-recombination in the depleted region, through 
defect levels near bandgap middle, which give: 

I = Ig-r [exp (eV/2kT) - 1],

it has an ideality factor  n=2;  in addition, the reverse saturation current is:

Ig-r =  A e ni W / 2τ
where W=width of the depleted region, τ =1/(√3kT/m)σtNt is charge carriers 
lifetime, dependent on Nt and on cross-section σt of the g-r levels.
The term Ig-r has (through W) a dependence Vβ upon voltage, with β=1/2 or 1/3 for 
abrupt or gradual junctions; its temperature coefficient is:

dIo /IodT  =  [2+Eg/2kT]/T ≈ 0.33[2+Eg/2kT] (%/°C at 300 K)
The total current in the photodiode is thus the sum of Iph. Basic diode equation is 
an approximant of such a sum. In particular, at high reverse bias the dark current is 
the sum of the two-saturation terms:

I = - Io = - Id - Ig-r

Trend is  that of diffusion (n=1) for ni (Dp/LpND)> W/2τ, and of g-r (n=2) in the 
opposite case.
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DarkDark currentcurrent andand saturationsaturation
((advanced topicadvanced topic, 3), 3)

In direct or zero bias, we obtain an ideality factor n=1 for voltage

V > (2kT/e) ln [(W/2τ)/(niDp/LpND)],       n=2 otherwise.
A final contribution to I0 is from surface states, interfaces defects giving  bangap 
levels. This is important only in PDs with very low I0.

PD saturation :
at high Iph, saturation determines the maximum signal detectable with linearity (III 
quadrant), the logarithmic conformity, and the voltage in the photovoltaic mode 
(IV quadrant). 
A saturation is caused by storage of charge Q collected at the boundary of 
undepleted regions after drift in the junction. When Q= Iphτ, (τ=drift time) is 
comparable to charge (Q=CbV) supplied by ionized dopant atoms to sustain 
applied voltage V, junction field decreases and a reverse fields appear in 
undepleted regions, thus impeding increase of Iph with increasing P.  For a p+n PD:

Iph(sat) =  A e NA µ* V / 2W

where µ* =(1/µn+1/µp)-1 is effective mobility. If generation is in the neutrality 
region p+ (as, in the UV) the limit is lower [that of diffusion times (τ=Ln

2/Dn)]: 

Iph(sat) =  A e NADn / 2W Ln
2
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Equivalent CircuitsEquivalent Circuits
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Frequency responseFrequency response

PD frequency response results from:  

- extrinsic cutoff due to the Z(ω) of the parasitics external to the
junction 

- intrinsic cutoff  inherent to the collection of photogenerated 
charges internal to junction

From the small-signal circuit:

Vu (ω)  = Iph(ω) Z(ω) =

Iph(ω) {Rp//(1/jωCg)//[Rs+(R//(1/jωCp)]}/[1+Rs/(R//(1/jωCp)]
where // is parallel operation,

Z(ω) = effective impedence seen by the PD (extrinsic cutoff)

Iph(ω) =f (ω) P(ω), signal current duplicating P(ω) with a tranfer
function f(ω) (intrinsic cutoff)
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Frequency responseFrequency response (2)(2)

Taking R>>Rs maximizes PD response (good for instrumen-
tation applications with a modest B) and:

Vu(ω) /Vu(0) = [Iph(ω)/Iph(0)]/[1+jω(Cg+Cp)(Rp//R)]

and the 3-dB cutoff frequency is:

f2 = 1 / 2π(Rp//R)(Cg+Cp)

For maximum speed of response, R is taken small so Cp in is 
short-circuited (response is sacrificed). For R<Rs : 

Iu(ω) /Iu(0) = [Iph(ω)/Iph(0)]/(1+jωCgRs) 

and cutoff frequency:

f2 = 1 / 2πRsCg
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Frequency responseFrequency response (3)(3)

Mean transit time to collection by drift (and induced current 
duration):

τd(z) = (1/2) (τdn +τdp) =(1/2) [(W-z)/vn + z/vp]

integrating on z (uniform generation)

τd =(1/2) W(1/vn+1/vp) = (W2/2Vbb)(1/µn+1/µp) 

= W2 / 2Vbb µ*

Frequency cutoff:          f2d = 0.44 / τd

Mean diffusion time to collection from undepleted regions 
τDn,p = Ln,p

2/Dn,p

Frequency cutoff:          f2d = 1 /2π τDn,p

A pole-zero frequency response is found (varies with λ)
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ZeroZero--pole in pole in pnpn--PDsPDs
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pnpn and and pinpin junction PDsjunction PDs
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designdesign nomogram fornomogram for SISI pnpn--junction PDsjunction PDs
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designdesign nomogram fornomogram for Si pinSi pin--junction PDsjunction PDs
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AdvantagesAdvantages of  pin overof  pin over pn PDspn PDs

• thickness W of the absorption region is independent 
from Vbb, (which has no influence on the spectral response; a good
η is got even at low bias Vbb near threshold λ≈λs)
• with W>> dA,dD, diffusion contribution is small -
(frequency response is independent of λ)
• since E≈const in the active layer, intrinsic speed of
response is optimized (time τd);
• reverse current (and g-r contribution) is nearly 
independent of Vbb, whence a very high value of Rp.
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SchottkySchottky (or metal(or metal--semiconductor)semiconductor) PDsPDs
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Heterojunction PDsHeterojunction PDs
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LatticeLattice matchingmatching inin heterostructuresheterostructures

a)

b)

c)

A material with a lattice size 
different from substrate (a)
will produce a layer with 

dislocation defects (b), but, if 
layer is very thin (c) , it is 
strained and layer has no

defects
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Lattice,Lattice, compositioncomposition andand energyenergy gapgap
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Common PDCommon PD structuresstructures
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