External Photoemission

Steps of photodetection in semiconductors

- absorption of photons in the material ($\rightarrow \alpha$, P=P₀ exp - α L)
- production of charge carriers (\rightarrow hv>E_g $\lambda_s [\mu m] = hc/E = 1.24 / E[eV]$),
- drift of charge carriers under an internal electric field $(\rightarrow junction, high \mu)$
- collection of charge carriers at the ohmic contacts

Materials and structures

- single semiconductors Si, Ge, Se, etc.
- binary compounds GaAs, InSb, PbS, PbSe, etc.,
- ernary compounds GaAlAs, InGaP, HgCdTe, PbSnTe
- *quaternary compounds* InGaAsP, etc.

energy gap E_g : from several eV to a few 10meV, spectral range (or threshold λ_s): from the UV to the far IR.

```
Structures:
photodiodes (pn, pin, ms and avalanche),
bipolar and unipolar phototransistors,
photo-SCR,
photoresistances
```

Features of semiconductor detectors

PRO's

• compact size and flexibility of geometry

•low bias voltage

- •spectral range from deep UV to far IR
- high peak *quantum efficiency uniformity* of performance parameters
- excellent *ruggedness wide temperature* range
- excellent mean time to failure (MTTF)
- space and hostile ambient qualification
- generally *low cost*

CON's

- very large *areas* difficult
- no single-photon capability, GB not the best
- *temperature dependence*

Photodiode's family

A sample of popular semiconductor photodetectors: singleelement photodiodes in metal and ceramic packages, linear arrays of photodiodes and high frequency SMD photodiodes with integrated preamplifier

pn-junction Photodiode

5

Absorption coefficient

Absorption coefficient α (and $L_{abs} = 1/\alpha$) strongly varies with λ in all semiconductors (data for T=300 K)

Refraction index of semiconductors

refraction index of semiconductor materials of typical photodiodes is fairly high (usually >3), giving a large reflection loss at entrance window

Reflection loss at entrance window

reflection R of vacuumsemiconductor interfaces, untreated (full lines) and singlelayer anti-reflection coated

Spectral sensitivity (UV .. NIR)

Spectral sensitivity (MIR .. FIR)

pn-junction Characteristics

Dark current and ideality factor (advanced topic)

From Shockley standard analysis of the pn-junction, ideality factor is unity (n=1) and reverse current I_d is :

$$I_{d} = A \ e \ n_{i}^{2} \left[(D_{p}/L_{p}N_{D}) + (D_{n}/L_{n}N_{A}) \right]$$

$$\approx A \ e \ n_{i}^{2} \left(D_{p}/L_{p}N_{D} \right) \qquad (\text{for } N_{A} \gg N_{D})$$

where A=PD active area, $D_{n'p}$ =minority diffusion constants, $L_{n'p}$ =diffusion lengths, $N_{D'A}$ =doping concentrations of donor/acceptor; n_i , intrinsic concentration of charge carriers is:

$$n_i^2 = N_C N_V \exp -E_g/kT \propto T^3 \exp -E_g/kT$$
,

Taking for (D/L) a dependence T^{γ} from temperature, it is:

 $I_d \propto T^{3+\gamma} \exp -E_g/kT$, (independent from V)

The, temperature coefficient of the dark current $I_0 = I_d$ is:

 $dI_o / I_o dT = [3 + \gamma + E_g / kT] / T \approx 0.33 [3 + \gamma + E_g / kT] (\%/^{\circ}C, 300 \text{ K})$

These eqs. apply at weak current levels or when the intrinsic concentration of charge carrier n_i is not too low.

Dark current and ideality factor (advanced topic, 2)

Another contribution is generation-recombination in the depleted region, through defect levels near bandgap middle, which give:

$$I = I_{g-r} [exp (eV/2kT) - 1],$$

it has an ideality factor n=2; in addition, the reverse saturation current is:

$$I_{g-r} = A e n_i W / 2\tau$$

where W=width of the depleted region, $\tau = 1/(\sqrt{3}kT/m)\sigma_t N_t$ is charge carriers lifetime, dependent on N_t and on cross-section σ_t of the g-r levels. The term I_{g-r} has (through W) a dependence V^β upon voltage, with $\beta=1/2$ or 1/3 for abrupt or gradual junctions; its temperature coefficient is:

$$dI_o/I_o dT = [2+E_g/2kT]/T \approx 0.33[2+E_g/2kT] (\%/^{\circ}C \text{ at } 300 \text{ K})$$

The total current in the photodiode is thus the sum of I_{ph} . Basic diode equation is an approximant of such a sum. In particular, at high reverse bias the dark current is the sum of the two-saturation terms:

$$I = -I_o = -I_d - I_{g-r}$$

Trend is that of diffusion (n=1) for $n_i (D_p/L_pN_D) > W/2\tau$, and of g-r (n=2) in the opposite case.

Dark current and saturation (advanced topic, 3)

In direct or zero bias, we obtain an ideality factor n=1 for voltage

 $V > (2kT/e) \ln [(W/2\tau)/(n_i D_p/L_p N_D)],$ n=2 otherwise.

A final contribution to I_0 is from surface states, interfaces defects giving bangap levels. This is important only in PDs with very low I_0 .

PD saturation :

at high I_{ph} , saturation determines the maximum signal detectable with linearity (III quadrant), the logarithmic conformity, and the voltage in the photovoltaic mode (IV quadrant).

A saturation is caused by storage of charge Q collected at the boundary of undepleted regions after drift in the junction. When $Q = I_{ph}\tau$, (τ =drift time) is comparable to charge (Q=C_bV) supplied by ionized dopant atoms to sustain applied voltage V, junction field decreases and a reverse fields appear in undepleted regions, thus impeding increase of I_{ph} with increasing P. For a p⁺n PD:

$$I_{ph(sat)} = A e N_A \mu^* V / 2W$$

where $\mu^* = (1/\mu_n + 1/\mu_p)^{-1}$ is effective mobility. If generation is in the neutrality region p⁺ (as, in the UV) the limit is lower [that of diffusion times $(\tau = L_n^2/D_n)$]:

$$I_{ph(sat)} = A e N_A D_n / 2W L_n^2$$

PHOTODIODES

14

Equivalent Circuits

Frequency response

PD frequency response results from:

- *extrinsic cutoff* due to the $Z(\omega)$ of the parasitics external to the junction
- *intrinsic cutoff* inherent to the collection of photogenerated charges internal to junction

From the small-signal circuit:

 $V_u(\omega) = I_{ph}(\omega) Z(\omega) =$

 $I_{ph}(\omega) \{R_p //(1/j\omega C_g) //[R_s + (R//(1/j\omega C_p)]\} / [1 + R_s / (R//(1/j\omega C_p)]]$ where // is parallel operation,

 $Z(\omega)$ = effective impedence seen by the PD (extrinsic cutoff)

 $I_{ph}(\omega) = f(\omega) P(\omega)$, signal current duplicating $P(\omega)$ with a tranfer function $f(\omega)$ (intrinsic cutoff)

Frequency response (2)

Taking R>>R_s maximizes PD response (good for instrumentation applications with a modest B) and:

 $V_u(\omega) / V_u(0) = [I_{ph}(\omega) / I_{ph}(0)] / [1 + j\omega(C_g + C_p)(R_p / / R)]$ and the 3-dB cutoff frequency is:

 $f_2 = 1 / 2\pi (R_p / / R) (C_g + C_p)$

For maximum speed of response, R is taken small so C_p in is short-circuited (response is sacrificed). For R<R_s:

$$I_{u}(\omega) / I_{u}(0) = [I_{ph}(\omega) / I_{ph}(0)] / (1 + j\omega C_{g}R_{s})$$

and cutoff frequency:

$$f_2 = 1 / 2\pi R_s C_g$$

Frequency response (3)

Mean transit time to collection by *drift* (and induced current duration):

$$\tau_{d}(z) = (1/2) (\tau_{dn} + \tau_{dp}) = (1/2) [(W-z)/v_{n} + z/v_{p}]$$

integrating on z (uniform generation)

$$\tau_{d} = (1/2) W(1/v_{n}+1/v_{p}) = (W^{2}/2V_{bb})(1/\mu_{n}+1/\mu_{p})$$
$$= W^{2}/2V_{bb}\mu^{*}$$

Frequency cutoff: $f_{2d} = 0.44 / \tau_d$ Mean *diffusion* time to collection from undepleted regions

$$\tau_{\mathrm{Dn},\mathrm{p}} = \mathrm{L}_{\mathrm{n},\mathrm{p}}^{2}/\mathrm{D}_{\mathrm{n},\mathrm{p}}$$

Frequency cutoff: $f_{2d} = 1 / 2\pi \tau_{Dn,p}$ A pole-zero frequency response is found (varies with λ)

Zero-pole in pn-PDs

In a pn-PD, intrinsic frequency response has a zero-pole region between f_{2D} (diffusion) and f_{2d} (drift), more markd at smaller λ . Typical values are $f_{2D}=1$ MHz, $f_{2d}=200$ MHz.

pn and **pin** junction PDs

design nomogram for SI pn-junction PDs

design nomogram for Si pin-junction PDs

Advantages of pin over pn PDs

- thickness W of the absorption region is independent from V_{bb} , (which has no influence on the spectral response; a good η is got even at low bias V_{bb} near threshold $\lambda \approx \lambda_s$)
- with W>> d_A, d_D , diffusion contribution is small (frequency response is independent of λ)
- since E \approx const in the active layer, intrinsic speed of response is optimized (time τ_d);
- reverse current (and g-r contribution) is nearly independent of V_{bb} , whence a very high value of R_p .

Schottky (or metal-semiconductor) PDs

Heterojunction PDs

Lattice matching in heterostructures

a)

C)

A material with a lattice size different from substrate (a) will produce a layer with

b) dislocation defects (b), but, if
 layer is very thin (c), it is
 strained and layer has no
 defects

Lattice, composition and energy gap

Common PD structures

PHOTODIODES

(e)