External Photoemission

Steps of photodetection in semiconductors

absorption of photons in the material (— o, P=P, exp -aL)

production of charge carriers (— hv>E,
A [Mm] =hc/E =1.24/E[eV]),

drift of charge carriers under an internal electric field
( — junction, high U)

collection of charge carriers at the ohmic contacts
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Materials and structures

» single semiconductors Si, Ge, Se, etc.
* binary compounds GaAs, InSb, PbS, PbSe, etc.,
 ernary compounds GaAlAs, InGaP, HgCdTe, PbSnTe

* quaternary compounds  InGaAsP, etc.
energy gap E,: from several eV to a few 10meV,
spectral range (or threshold A)): from the UV to the far IR.

Structures:
photodiodes (pn, pin, ms and avalanche),
bipolar and unipolar phototransistors,

photo-SCR,
photoresistances
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Features of semiconductor detectors

PRO’s
scompact size and flexibility of geometry
*low bias voltage
sspectral range fromdeep UV to far IR
 high peak quantum efficiency
suniformity of performance parameters
 excellent ruggedness wide temperature range
« excellent mean time to failure (MTTF)
e space and hostile ambient qualification

» generally low cost
CON's
e very large areas difficult
* no single-photon capability, GB not the best

* temperature dependence
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Photodiode’s family

PHOTODIODES

A sample of popular
semiconductor
photodetectors: single-
clement photodiodes in
metal and ceramic
packages, linear arrays
of photodiodes and
high frequency SMD
photodiodes with
integrated preamplifier



pn-junction Photodiode
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Absorption coefficient
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INDEX OF REFRACTION n

Refraction index of semiconductors

2  hv (eV)

1.0 08 06

\N
}hw"\\\ Ge
\ GaSb
\ InAs
J < >
,’ aAs
InSb
GaP InP
\ .
S|3N4
\ .
SiO,

T
300

T
400

T 1 T 1
600 800 1000

WAVELENGTH A (nm)

| —
1400

T T 1
2000

PHOTODIODES

refraction index of
semiconductor
materials of typical
photodiodes is fairly
high (usually >3),
giving a large
reflection loss at
entrance window



REFLECTION COEFFICIENT R

Reflection loss at entrance window
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spectral
sensitivity
a(A) [aw] =
=1/P =
=nNeMA/hc =
N A[um]/1.24



SPECTRAL SENSITIVITY ¢ (A/W)

Spectral sensitivity (MIR .. FIR)
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pn-junction Characteristics
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Dark current and ideality factor
(advanced topic)

From Shockley standard analysis of the pn-junction, ideality factor is unity (n=1)
and reverse current I is :

[4= A en?[(D,/L Np)+D,/L,N,)]
=Aen?(D/LNp)  (for N,>>Np)

where A=PD active area, Dn,pZminority diffusion constants, Ln,p=diffusi0n

lengths, N, ,=doping concentrations of donor/acceptor; n,, intrinsic concentration
of charge carriers is:

n?= NNy exp -E/KT U T° exp-E /KT,
Taking for (D/L) a dependence TY from temperature, it is:

[0 T exp -E /KT, (independent from V)

The, temperature coefficient of the dark current I =I; 1s:
dl, /I, dT =[3+y +Eg/kT] / T= 0.33[3+y +Eg/kT] (%/°C, 300 K)

These eqs. apply at weak current levels or when the intrinsic concentration of
charge carrier n, 1s not too low.
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Dark current and ideality factor
(advanced topic, 2)

Another contribution is generation-recombination in the depleted region, through
defect levels near bandgap middle, which give:

[=1,, [exp (eV/2kT) - 1],
it has an ideality factor n=2; in addition, the reverse saturation current is:
[,,=Aen W/21

where W=width of the depleted region, T =1/(\/3kT/m)CftNt i1s charge carriers
lifetime, dependent on N, and on cross-section O, of the g-r levels.

The term I, has (through W) a dependence VB upon voltage, with 3=1/2 or 1/3 for
abrupt or gradual junctions; its temperature coefficient is:

dI, /1,dT = [2+E/2kT}/T = 0.33[2+E,/2kT] (%/°C at 300 K)

The total current in the photodiode is thus the sum of [ ;. Basic diode equation is
an approximant of such a sum. In particular, at high reverse bias the dark current is
the sum of the two-saturation terms:

I=-1=-1;- Ig_r
Trend 1s that of diffusion (n=1) for n, (Dp/LpND)> W/2t, and of g-r (n=2) in the
opposite case.
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Dark current and saturation
(advanced topic, 3)

In direct or zero bias, we obtain an ideality factor n=1 for voltage
V> (2kT/e) In [(W/2T1)/(n,D,/L Np)],  n=2 otherwise.

A final contribution to I, is from surface states, interfaces defects giving bangap
levels. This 1s important only in PDs with very low I,

PD saturation :

at high I}, saturation determines the maximum signal detectable with linearity (III
quadrant), the logarithmic conformity, and the voltage in the photovoltaic mode
(IV quadrant).

A saturation 1s caused by storage of charge Q collected at the boundary of
undepleted regions after drift in the junction. When Q= I, T, (T=drift time) is
comparable to charge (Q=C, V) supplied by ionized dopant atoms to sustain
applied voltage V, junction field decreases and a reverse fields appear in
undepleted regions, thus impeding increase of [, with increasing P. For a p'n PD:

where p* =(1/pn+1/|,lp)'1 is effective mobility. If generation is in the neutrality
region p* (as, in the UV) the limit is lower [that of diffusion times (T=L_%/D,)]:

Ly = AeN,D,/2W L2
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(a)

Equivalent Circuits

(b)

basic biasing scheme

(c)
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Frequency response

PD frequency response results from:

- extrinsic cutoff due to the Z(w) of the parasitics external to the
junction

- intrinsic cutoff  inherent to the collection of photogenerated
charges internal to junction

From the small-signal circuit:

Vi (W) = I (w) Z(w) =

Lon(0) {R//(AJWC)[RAR/(AJWC) /[ 1+R/(R//(1/0C,) ]
where // 1s parallel operation,

Z.(W) = effective impedence seen by the PD (extrinsic cutoff)

[,(0) =t (W) P(w), signal current duplicating P(c)) with a tranfer
function f(w) (intrinsic cutoff)
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Frequency response (2)

Taking R>>R_ maximizes PD response (good for instrumen-
tation applications with a modest B) and:

V(@) /V(0) = [I,()/I,(0) )/ [1H(CHC )R //R)]
and the 3-dB cutoff frequency is:
f, =1/21R //R)(C+C))

For maximum speed of response, R 1s taken small so C,1n 18
short-circuited (response is sacrificed). For R<R.:

I,(@) 1,(0) = [ ()15 (0) /(14 WCR,)
and cutoff frequency:
f,=1/2TR,C,
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Frequency response (3)

Mean transit time to collection by drift (and induced current
duration):

142) = (112) (T, +14) =(1/2) [(W-2)Iv,, + 2/,]
integrating on z (uniform generation)
T4=(172) W(1/v+1/v,) = (W22V ) (1P, +1/0)
=W2/2V, U
Frequency cutoff: £,,=0.44 /14

Mean diffusion time to collection from undepleted regions
Tonp = Ln,p2/Dn,p

Frequency cutoff: g =121y,

A pole-zero frequency response is found (varies with A)
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Zero-pole in pn-PDs

relative response |, (w) / bh (0)
|
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In a pn-PD, intrinsic frequency response has a zero-pole region
between f,, (diffusion) and £, (drift), more markd at smaller A.

Typical values are f,,=1 MHz, 1, ;=200 MHz.
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pn and pin junction PDs
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design nomogram for SI pn-junction PDs
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design nomogram for Si pin-junction PDs
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Advantages of pin over pn PDs

 thickness W of the absorption region 1s independent
from V_,, (which has no influence on the spectral response; a good
N is got even at low bias V,, near threshold A=A))

e with W>> d,.,d,, diffusion contribution 1s small -
(frequency response is independent of \)

e since E=const in the active layer, intrinsic speed of
response 1s optimized (time T,);

e reverse current (and g-r contribution) 1s nearly
independent of Vy,, whence a very high value of R .
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Schottky (or metal-semiconductor) PDs
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Heterojunction PDs
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Lattice matching in heterostructures

A material with a lattice size
different from substrate (a)
will produce a layer with
b) dislocation defects (b), but, if
layer 1s very thin (c) , 1t is
strained and layer has no
defects
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d - lattice constant (nm)
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Common PD structures
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