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Optical preamplificationOptical preamplification

phPs G I

G Ps

Optical power gain is G. At output, added to amplified signal GPs  a dc
power due to amplified spontaneous emission is found:

ASEout = nsp(G-1)hν∆ν0



2from:”Photodetectors”, by S.Donati, Prentice Hall 2000

OAOA noise equivalent circuit noise equivalent circuit
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Noise input: ASE shot-noise plus
excess noise (f actor F)

          Pu = GPs + GASEi

σ2
Pu = 2F G2 hν Ps B + 2 hν G2ASEi B
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AO performanceAO performance
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Requirements forRequirements for OA OA preamplification preamplification

•  SIGNAL LEVELS:     ASEi limi ts minimum signal amplitudes

     Pi=1÷10µW (or -30÷-20 dBm).

    Onset of saturationis at about 1-10 mW

•  WAVELENGTHS:     a few available, in correspondence to

                   laser lines (e.g., 1500, 1300, 1060, 850 nm)

•  SIGNAL MODE:        a single spatial mode is required, or the low

                                                coupling η to �DFA fi ber would f rustrate any

                                                amplification

•  Large PIXEL #:           extension theoretically feasible but not yet

                                                demonstrated: problem is that, in AO with N

                                                modes, ASE increases N times becoming very

                                                high for images with N =105..106 pixels
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InjectionInjection  detection detection
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InjectionInjection  gain gain

gain:
G = µ κ(ν) 2√(P0/Ps)
where  κ(ν) ≈ 1 inside
νcav, and µ 2√(P0/Ps) is
the normal coherent gain
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CalculationCalculation of of injection injection gain gain

signal f ield Es (outside input mirror of the laser) and the laser
cavity field E0 are represented as rotating vectors:

  Es = Es exp iϕs     and    E0 = E0 exp iϕ0   

       with: ϕs = Ωst+ψs=2πνst+ψs     and     ϕ0 = Ω0t+ψ0=2πν0+ψ0

Lamb equations, modif ied to take account of the external injected
signal read:

(d/dt)E0 = [(α−βE0
2)- Γ] E0 + (c/2L) TEs cos (ϕs-ϕ0+ψ)

      (d/dt)ϕ0 = Ω0 + ζ (α−βE0
2) +(c/2L)T(Es/E0) sin (ϕs-ϕ0+ψ)

where: α =λ2c(n2-n1)/8πτ21∆νat  is gain rate, β= gain saturation, Γ=ν0/2Q cavity
loss-rate, L= cavity length, and c/2L=mode spacing, T = √(1-R) f ield trans-
mission of the input mirror, ψ = fi eld coupling phaseshift, ζ =(ν0-νat)/∆νat is
f requency offset respect to gain line center νat, ∆νat = (atomic) gain linewidth
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CalculationCalculation (2) (2)

In semiconductor lasers, we shall add another equation relating
carrier concentration n to photon density (or E02), as:

(d/dt)n = J/ed - n/τp - (n-nth)(1- ΞE0
2)[1-(β/α)E0

2]α*E0
2

where: J  = pump current density,  τp is the charge-carrier lifetime,
nth is the carrier concentration at threshold,  Ξ is the mode-confinement factor,
α* = 2α/(n2-n1).

This set of equations is the Lang and Kobayashi description.
However, with no loss of generality, we will proceed with Lamb
equations.
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CalculationCalculation (3) (3)

Letting (d/dt)E0=0 and solving for E0 and (d/dt)ϕ0 give the steady-
state values of f ield and f requency, or, the values E00 and ν00 of
the unperturbed regime. Using a WKB method to solve Lamb eq.,
that is, a trial solution like:

E0 =  E00 + e0         (with  e0<<E00)

we get:        (d/dt)(ϕ0 - ϕ s) = A [1+ K sin(ϕ0 - ϕs+ψ)]

this is Adler equation describing the frequency locking or
synchronization of an oscillator. For K≥1 solution is ϕ0-ϕs=0
(locking in phase to signal), and for K<1 it can be solved with:

        ϕ0(t) − ϕs = -ψ - arcsin {[K- sinΦ(t)]/[1-KsinΦ(t)]}

where  Φ(t)= (1-K2)1/2(Ωs -Ω00)t + arcsin K  is the phase of a
quasi-sinusoidal oscillation at the unperturbed freq. dif f . Ωs-Ω00.
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CalculationCalculation (4) (4)

K has the meaning of coupling factor and is given by:

                   K= [T(c/2L)/(νs -ν00)] Es/E00

With this result, f ield amplitude is solved as:

             E0 = E00+e0 = E00 + [Tc/2L(α−Γ)] Es cos[ϕ0(t)− ϕs]

Thus, outside locking range (K<1), injection produces an A-M of
the laser f ield with a modulation index proportional to the signal
f ield Es. F-M is also found because Ω0(t)=(d/dt)ϕ0(t) is not const.
and depends on K and Es . This explains the qualitative trend of
the beating waveforms (next slide).

Thus we have, by injection heterodyning, a series of lateral
sidebands impressed on the f requency spectrum of the laser; the
carrier also has a minor f requency pulling to signal f requency.
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CalculationCalculation (5) (5)

Detecting the signal E0 , current is given by:

 I0 =(σ/2Z0)〈 E00+e02〉 = I00+2√(I00Is) [Tc/2L(α−Γ)] cos(Ω0−Ωs)t

On a dc term I00, signal is at carrier at f requency Ω00−Ωs and has
an amplitude larger than with direct detection Is by a factor G:

    G = Gcoh [Tc/2L(α−Γ)]= Gcohκ(ν)  

Gcoh=2√(I00/I s) being the usual coherent gain. The quantity

                     κ(ν)=Tc/2L(α−Γ)

is usually <1 but is not <<1, so system performance is practically
coincident to that of coherent detection. Bandwidth is however
lim ited to about the laser cavity linewidth. Noise factor is ≈ 3 dB.
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CalculationCalculation (6) (6)

In homodyne injection, signal emitted by the laser re-enters the
cavity after propagation to a target at distance s. Power attenuation
is A=a2 . Injected term is now Es=aTE0 and has a phase ψ = 2ks

 (d/dt)E0 = [(α−βE0
2)- Γ] E0 + (c/2L) aT2E0 cos (ψ+2ks)

 (d/dt)ϕ0 = Ω0 + ζ (α−βE0
2) + (c/2L) aT2 sin (ψ+2ks)

With the same perturbative method outlined above, we find that:
- in place of locking we have mode f requency-hop, that for
   K=aT2c/2L(α−Γ)>1 laser oscillates on the external cavity;
- at weak injection levels (K<<1), the cavity field is perturbed to:

                 E0 = E00 {1+ [aT2c/2L(α−Γ)] cos 2ks}

                 ν0  = ν00 +(aT2c/2L) sin 2ks
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CalculationCalculation (7) (7)

Here, the role of relative signal amplitude Es/E00 is replaced by the
attenuation a of the f ield propagated external to the source.
Proportional to a , A-M and F-M modulations of the laser f ield are
f ound, with a coherent gain for the amplitude a
⇒   coherent echo detectors (using the A-M signal)
A-M signal is easily detected at the photodetector as a photo-
current variation given by:

      I0 =(σ/2Z0) 〈 E00+e02〉 = I00{1+ 2[aT2c/2L(α−Γ)] cos 2ks}

F-M signal is:  ν0  = ν00 +(aT2c/2L) sin 2ks

and can be recovered by beating with a second oscillation in dual-
mode (Zeeman) lasers
⇒  f eedback interferometers, in which A-M and F-M provide  the
two quadrature signals cos2ks and sin 2ks.
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Quantum-Non-Quantum-Non-DemolitiveDemolitive detection detection

•  QND is to detect photons without “demolishing” them
   (absorbing their energy) at the PD _ photon can pass unaltered.
•  To measure photons without absorbing, we need a parametric
    interaction with the detection system, giving a variation in a
    physical quantity measurable without energy exchange.
•  A parametric medium may be one with an optical nonlinearity
    n2 of the refraction index, in which a (weak) signal beam is
    superposed to a strong pump beam.
•  Interaction of the two beams with nonlinearity  generates
   an optical pathlength variation, proportional to signal power.
   This variation is read with a conventional interferometer,
   conveniently using the pump beam itself as the readout.



17from:”Photodetectors”, by S.Donati, Prentice Hall 2000

QND basicQND basic scheme scheme

Iph

E
s

I F

 balanced 

50/50
  BS

M M

E
p

Es
+

E
p

E
p

√2

50/50
  BS

nonlinear
 crystal

E
s

detector

I F



18from:”Photodetectors”, by S.Donati, Prentice Hall 2000

QNDQND signal signal

In the crystal of length L, the phase delay Φ=nkL is:

Φ  = nkL = kL [n0+(n2/2Z0) 〈 Ep exp iϕp+Es exp iϕs2〉 ]
               =  kL [n0+(n2/2Z0) Ep

2] + (kLn2/Z0)EpEs〈 cos(ϕp-ϕs)〉
               =  Φ0 + ∆Φ µ
f irst term is an unessential fixed phase Φ0,
second term contains the signal field amplitude Es,
                   ∆Φ µ =  (kLn2/Z0) Ep Es µ,

proportional to the coherence f actor µ=〈 cos(ϕp-ϕs)〉 containing
the f requency dif f erence ϕp-ϕs=(ωp-ωs)t. As in hetherodyne
detection, it has a rms value 1/√2.
Readout of ∆Φ is performed dividing the pump beam in the two
interferometer legs, ending in the balanced detector.
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QNDQND signal signal (2) (2)

 Then, PDs currents are:

Iph1,2 = (σA/2Z0){(1/2)Ep
2+(1/2)Ep

2 ±2(1/2).EpEscosnk(L-L ref)}
=  Ip ± Ip cos{Φ0+(1/√2)∆Φ-Φref}

where Ip=(σA/2Z0)Ep
2 is the photocurrent due to pump power

and Φref=nkLref is the phase delay of the reference leg.
Adjusting the interferometer the balanced detector signal is:

S = Iph2 -Iph =  2 Ip sin (1/√2)∆Φ = √2 Ip
 ∆Φ      (f or ∆Φ<<1)

So, the dc component Ip is canceled and a linear dependence
f rom ∆Φ is obtained. S can be written, in terms of Is:

S = √2 (2kLn2Ip/σA) √(IpIs) = κ G Is
G=√(Ip/Is) being the coherent gain and κ=2√2kLn2Ip/σA the extra QND
f actor. QND detection is not much diff erent from coherent detection if  κ≈ 1.
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QNDQND signal signal ( (Example))

Carrying out the QND experiment in a GaAs crystal
                                                    at λ=1µm where we have:

- n2=1.5.10-12 cm2/W,
- with a  L=2cm guide of section A=2x3(µm)2=6.10-8 cm2,
to attain κ=1 we need a pump power (in each arm):
Ip/σ = κA/2√2kLn2 = 6.10-8/2.82.6.28.104. 2. 1.5.10-12

                                               = 110 mW, a high but reasonable value
QND detection is dif f icult to implement f or competing
nonlinear effects (Raman and Brill ouin scattering, modulation
instability, parametric gain). These eff ects prevent performing
the experiment in a km-long optical fiber where the pump power
could be decreased because of the long interaction path.
.
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QNDQND signal signal ( (Comment))

Also, f rom an engineering standpoint, it is objectionable to use a
powerful laser as the pump in a detection system, respect  to
using the same active chip as an optical amplifier boosting a
small f raction of power tapped from the signal, or, alternatively,
to detect and re-transmit the signal.
Thus, if developed into a practical architecture, it is likely that
QND will f ill application niches rather than being a general tool.
An envisaged application f or QND could be in very large local
area networks, where the signal could travel through a huge
number of users and be detected with no loss at each location.
Also, QND is interesting as the sole example of a parametric
detection technique __ eventually to be re-invented with a
dif f erent working principle in a simpler, more viable scheme. .
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QNDQND noise noise

Noise in QND: each signal Iph1,2 has shot-noise 2eIpB, ∆Φ has a
variance σ2

∆Φ, and last, we add Johnson-noise of the load R:

           σ2
S  = 2e (2Ip) B + 2Ip2σ2

∆Φ + 4kTB/R
With simple error-propagation calculations, we f ind that:

              σ2
∆Φ  = (kLn2/σA)2 [(I s/Ip) σ2

Ip+(Ip/I s) σ2
Is]

                        = (kLn2/σA)2 2e(Is+Ip)B
therefore, the variance is:

          σ2
S  = 2e(2Ip)B + 2κ2 2e(Ip+I s)B + 4kTB/R

As S2=κ2IpIs , using N2=σ2
S, we get for the QND S/N ratio:

      (S/N)2    =  κ2 Is /2eB[2+2κ2(1+Is/Ip) + IR/Ip)]
                   ≈  (Is /4eB) κ2

 /(1+κ2)               (f or Ip>>Is,I R)

For large κ, QND performance reaches the quantum limit of Is.
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A finalA final  remark remark on QND on QND

Are photons leaving the QND detection really unalteredreally unaltered?
For Heisenberg uncertainty principle (HP), conjugate variables
like photon number N  (N=PT/hν) and phase Φ, have an
uncertainty product not less than     ∆N  ∆Φ ≥ 1/4.
Observing (or measuring) N, amounts in quantum mechanics to
having reduced the photon uncertainty ∆N. Then, it is necessary
that phase uncertainty ∆Φ after the QND mesurement becomes
larger than that before observation.
Source f or this is actually f ound in QND scheme: shot noise of
the pump power modulates n by the nonlinear effect, and signal
optical pathlength is aff ected by a random phase modulation
increasing ∆Φ. By an analysis of the problem, it may be f ound
that the excess phase-noise exactly satisfies HP.
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BeyondBeyond the Quantum the Quantum Limit Limit  ? ?

Can we go beyond the quantum li mit (QL) in any special case ?

No, with the usual sources having:

•  a Poisson statistics of counts (energy hν or charge e  quanta)
•  a shot (or quantum) noise with white spectral density 2hνP
   or 2eI and variance 2hνPB or 2eIB
These statements are consequences of each other and establish the S/N QL we
are familiar with, expressed equivalently as:

•  mean photon number per bit N,  giving (S/N)=√N
•  noise in photocurrent NI

2=2eIphB
•  detected power NP

2=2ehνPB.
Note: quantum limit is traced back to Poisson photon-statistics -
is not caused by the detector.
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SqueezedSqueezed--StatesStates::  photons photons

To have a variance below QL, we should be able to build an unconventional
radiation source with a sub-Poisson statistics of photons, i .e., a time

distribution of emitted photon more regular than the Poissonian:
σ2

n<〈 n〉    (or F<1)

Poisson distributed

T
t

t

t
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 periodic sequence σ   = 02

σ   = 2 n

σ   <2 n
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SqueezedSqueezed--StatesStates::  fields fields

1
a

a
2 ∆E

E E

∆E
E'

∆E

∆E
2

t

 poissonian coherent state

t

t

E ∆N

∆ϕ
E

t

squeezed state,  phase-quadrature

v

squeezed state,  number 

vacuum state (<n>=0)

squeezed vacuum 

E(t)

E(t)

E(t)

t

a
2

1

E(t)

1
a

1
a

1
a

2
a

2
a



27from:”Photodetectors”, by S.Donati, Prentice Hall 2000

SSSS sources sources
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semiclassical view of vacuum fluctuationssemiclassical view of vacuum fluctuations

power associated to E+∆E is P=(A/2Z0) 〈 E+∆E2. By developing
the square we get:
                P=(A/2Z0)[E2+2Re(E∆E*)+∆E2 ]
f irst term is the average power P=(A/2Z0)E2, last term can be
neglected because small, and the second has a zero mean value and
a variance given by:
        σ2

P=〈 ∆P2〉 =(A/2Z0)24E2〈 ∆E2〉 = 4P(A/2Z0)〈 ∆E2〉
If we want this expression coincides to shot noise, σ2

P=2hνPB, we
need 2(A/2Z0)〈 ∆E2〉 =hνB, and, as the spectrum is white, we get:
                       d(∆E2A/2Z0)/dν = 1/2 hν
In addition, letting Z0=√(µ0/ε0) and B=1/2T where T=L/c is the
time of observation and L=V/A, we readily get 〈 ∆E2〉 = hν /2ε0V.
Again, a2 =[(1/2)ε0V]  (E/hν) 2 can be interpreted as the mean
number of photons, and 〈 ∆a2〉  its fluctuation, because (1/2)ε0VE2

is the energy contained in the observation volume V.
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semiclassical view of vacuum fluctuations 2semiclassical view of vacuum fluctuations 2

Thus, shot noise is explained as the beating of the mean field E and
of the field fluctuation ∆E, with a power spectral density equal to
half photon (hν/2) per Hertz of bandwidth.
Also, f rom 1/2ε0V〈 ∆E2〉 /hν = 1/4 , f luctuation in the number of
observed photons is 1/2 photon and this  comes from the (hν/2)
uncertainty of energy (1/2)ε0VE2 in the observation volume V.
Note that fluctuation ∆E is always the same amplitude, independent
of the mean field E (or  photon number N). This is true also for E=0
or n=0, that is, f or the zero-field or vacuum state, the fluctuation ∆E
is f requently referred to as the coherent-state or the vacuum-state
f luctuation.
The phase fluctuation is expressed as the ratio of ∆E to mean value
E, i.e., ∆φ= ∆E/E. By squaring and averaging we get
〈 ∆φ2〉 =〈 ∆E2〉 /E2=(1/2)hνB/P=hν/4TP=1/4N,
where N=〈 n〉 =PT/hν is the mean number of photons.
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SS inSS in coherent coherent detection detection

Detecting a SS radiation by direct-detection, one has

                (S/N)2 = 〈 n〉 2/σ2
n= N / F

But, if  SS is attenuated by ε, squeezing factor is degraded to:

                             F' = 1 - ε (1-F)

In homodyne detection and with a balanced detector, S/N ratio
of the photocurrent is :

(S/N)2hom,ss = I2/〈 ∆I〉 2 =  4µ2I I 0
 / [2e(IF0+I0F+Ib)B+4kTB/R]

where F and F0 are the squeezing factors of signal I  and local
oscillator I0: squeezing factors interexchange in product. For
I0>>I+Ib+I R the classical homodyne S/N is improved by the
signalsignal  squeezing factor
                           (S/N)2

hom,ss=(S/N)2
hom,cl/F
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LabilityLability  of SS of SS radiation to attenuation radiation to attenuation

0.5

1.0

0
0 0.5 1.0

F =0

0.9

0.5

0.7

total efficiency - εη

IDEAL
DETECTOR
η=1

<n> , F Ft

ε

REAL
DETECTOR
with η=ε

<n> , F F
t

REAL
DETECTOR
    η 

<n> , F Ft

ε

F
t

ou
tp

ut
 s

qu
ee

zi
ng

 fa
ct

or



32from:”Photodetectors”, by S.Donati, Prentice Hall 2000

SS inSS in phase measurements phase measurements

In phase measurements, attenuation can be made negligible
and we f ully exploit the squeezing f actor improvement in the
variance 〈 ∆Φ2〉  of the phase Φ under measurement.
In a Mach-Zehnder read by a coherent radiation P entering at
the input port, output at the balanced detector and phase are:

                Vu = RσPcosΨ ≈ −RIΦ,      〈 ∆Φ2〉 cl = eB/2I

where Ψ=nk(l1-l2)=π/2+Φ is the optical pathlength dif f erence,
adjusted in quadrature so as to read Φ.
Adding a source of  squeezed radiation at the normally unused
input port, the phase variance is calculated as:

               〈 ∆Φ2〉 ss = F0 〈 ∆Φ2〉 cl = F0 eB/2I

(I=σ P,  F0 = squeezing factor). Accuracy is improved by F0.
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New model ofNew model of photodetector noise photodetector noise

 At optical frequencies, first quantization is no more suff icient.
 We need  to account for HP embodying second quantization in a
semiclassical model (SCM) . Postulates of SMC are:

◊  any electric field E of radiation has a Gaussian distributed
   fluctuation ∆Ecoh with mean and variance given by:

〈 ∆Ecoh〉 = 0,   〈 ∆Ecoh
2〉 = (2Z0/A)1/2 hν B

◊  in any unused port, with no applied signal, the vacuum field still
    exists with its fluctuations, and there we shall take account of
    〈 ∆Evac

2〉 = 〈 ∆Ecoh〉  entering in the experiment.
◊  the vacuum fluctuation is not directly observable in itself, and
    thus in the basic photodetection relation we subtract 〈 ∆Evac

2〉 :

                 Iph = (σA/2Z0) {〈 E2〉 - 〈 ∆Evac2〉 }
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ApplicationApplication of of photodetector noise  photodetector noise modelmodel

 Model gives correct results and explains:
• Detection of a coherent (Poissonian) signal by an ideal detector: classical
result is f ound and is newly  interpreted as the beating (or heterodyning) of the
f ield fluctuation ∆Ecoh with signal oscillation

•Detection of a coherent signal with a real detector: as above

• Detection of a squeezed-state signal with F≠1 by a real detector: composition
rule for the squeezing factor F'=1-η(1-F) is found.

• Coherent detection with signal and pump squeezed by Fs and F0 : two features
escaping f irst-quantization are explained (cross-multipli cation of squeezing
f actors with signals, and that no shot noise accompanies the beating )
• Detection of a wide-spectral bandwidth signal: beating of the fl uctuations of
the various spectral components is found
• Detection of a signal on a wide-spectral bandwidth background: beating of the
f luctuations ofspectral components and its heterodyning with signal is explained
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OA modelOA model

OA is modeled by an amplifying beamsplitter opening a port on vacuum fi eld
f luctuations. Amplif ied vacuum field is just the ASE, and all the noise terms
are obtained with no further assumptions. Adding a second beamsplitter nsp

accounts for the incomplete inversion of the medium.

E  + ∆ Es coh photo-
detector 

Evac∆

Iph

Eout
√G

i√(G-1)

√n
sp
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New Model:New Model: Example Example 1 1

• Detection of a coherent (Poissonian) signal by an ideal detector
A signal carrying a power Ps has an average field Es= √[(2Z0/A)Ps] ei(ωt+φ )

and a fl uctuation ∆Es=∆Ecoh. By inserting the f ield at the PD as Eph=Es+∆Ecoh,
and developing the modulus, we get:
   Iph=(σA/2Z0).{ 〈 EsEs*+ ∆Ecoh∆Ecoh*+2ReEs∆Ecoh* 〉 -〈 ∆Evac∆Evac* 〉 } 
in which σ=e/hν f or an ideal detector. The fi rst term is the usual mean current
Iph=σPs=σA〈 Es

2〉 /2Z0, the second cancels out with the last, and the third has a
zero mean and a spectral density:

                         S = 4Es
2 (2Z0/A)1/2 hν

whence the variance of the photogenerated current is:

  σ2
I = (σA/2Z0)2S = (σA/2Z0)4Es

2σ1/2hνB  = 2Iph (e/hν)hνB  = 2 e Iph B

Thus, we have re-obtained the classical result and can newly interpret it as the
beating (or heterodyning) of the f ield fluctuation ∆Ecoh with signal oscillation.
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New Model:New Model: Example Example 2 2

• Detection of a coherent signal with a real detector
A real detector with η<1 is equivalent to an ideal detector preceded by a BS
with transmission η, thus we model i t as shown and add, in the unused port,
the vacuum fi eld fluctuation ∆Evac. Considering the BS, the f ield at PD is:

Eph= √η Es
 +√η ∆Ecoh

 + i√(1-η) ∆Evac

where f ield transmission is √η and factor i=√-1 is due to the beamsplitter
phaseshift. By inserting in above equation, we get the classical result:

               Iph =η(e/hν) Ps,         σ2
I = 2 e Iph  B

E  + ∆Es coh   ideal (η=1)
photodetector 

η√

i√(1-η)

Evac∆

I

E

ph

ph
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New Model: New Model: ExamplesExamples 3,4 3,4

• Detection of a squeezed-state signal with F≠1 by a real detector
In this case we have again last equation, but with ∆Es substituted by √F∆Es, and
the variance is:

σ2
I = 2 e η Iph B + 2 e (1-η) F Iph B

From this result, the composition rule f or the squeezing f actor F'=1-η(1-F)
f ollows. We may also remark that this result comes from the beating of the
signal with the vacuum f luctuation, of  which we can fi nd only a trace for F≠1
[otherwise we return to classical result].

• Coherent detection with signal and pump squeezed by Fs and F0

Repeating the calculations for the schemes of SS, quoted results are obtained.
Thus, two features escaping f irst-quantization models are explained:
•  that squeezing factor and signal are multiplied by each other and interchanged
    in the noise;
•  that no shot noise need be attributed to the beating term signal-local oscillator
   EsE0 in coherent detection.
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ExampleExample 5 5

• Detection of a wide-spectral bandwidth signal
In this case the signal is the superposition of  many independent frequency
oscillations and shot-noise variance no longer applies.
Let g(f -f 0) be the spectral power distribution, which we assume with a unity
peak value g(0)=1 at f= f0, so that its integral on f , ∫-∞,+∞ g(f ) df=Bopt, represents
the source linewidth. The spectral power in f ...f+∆f is ∆P=(Ps/Bopt)g(f ) ∆f  and
the corresponding mean field is:    Es(f ) = √[(2Z0/A) ∆P].
As usual, we shall add to the mean field the contribution ∆Ecoh. By repeating the
calculations, mean and spectral density of photogenerated current are found as:

〈 Iph〉 = σ Ps,         d〈 ∆Iph
2〉 /df  = 2 eIph+2(Iph

2/Bopt) g(f)*g(f ) 

where *  indicates the convolution operation and g(f ) is the emission spectral
distribution translated in baseband. The second term is from the beating of the
f luctuations in the spectral components g(f-f 0)  of the source. For a measurement
on an electrical bandwidth B<< Bopt, we get from the result, assuming g(0)=1:

                            σIph
2 = [2 eIph+2(Iph

2/Bopt)] B
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• Detection of a signal on a wide-spectral bandwidth background
Here, the signal is a narrow-band coherent state and is added to a wide
spectrum background (such as dark current, ASE, etc.). Let IS indicate  the
signal and IASE the background with a distribution gASE(f ) as in Example 5.
From the calculations, one has:

〈 Iph〉 = σ(PS+PASE)= IS+ IASE

d〈 ∆Iph
2〉 /df  = 2eIS+2eIASE+2(IASE

2/Bopt) g(f)*g(f )+ 4(ISIASE/Bopt) g(f)

The four terms can be interpreted as: signal shot noise, ASE shot noise, ASE-
ASE beating and signal-ASE beating. Letting again B<<Bopt we get:

σIph
2 = [2eIS+2eIASE+2(IASE

2/Bopt)+ 4(ISIASE/Bopt)] B

If we now consider the ASE of an OA, IASE=σ PASE=(e/hν)(G-1)hνBopt, and
that the signal out is IS= GIs(in), above eq. can be brought to coincide with
already considered expressions.


