# **Direct and Coherent Detection**



# **Coherent gain**

In coherent detection, signal and local oscillator fields are:

$$E = E \exp i(\omega t + \varphi), \quad E_0 = E_0 \exp i(\omega_0 t + \varphi_0)$$

thus  $I_{ph} = (\sigma A/2Z_0) [\langle |E|^2 \rangle + \langle |E_0|^2 \rangle + 2 \operatorname{Re} \langle E_0 E^* \rangle ] =$ =  $(\sigma A/2Z_0) \{E^2 + E_0^2 + 2 E E_0 \langle \cos [(\omega - \omega_0)t + \varphi - \varphi_0] \rangle \}$ 

or, 
$$I_{ph} = I + I_0 + 2\mu \sqrt{(I I_0)}$$

compared to I of direct detection, we find a

**coherent gain** 
$$G_{coh} = I_{ph}/I = 1 + 2\mu \sqrt{(I_0/I)}$$

 $\mu$  is the coherence factor. When  $\omega = \omega_0$  detection is called *homodyne*, while if  $\omega \neq \omega_0$  we have *heterodyne* detection.

## **Coherence factor**

 $\mu = \langle \cos (\varphi - \varphi_0) \rangle$  ranges from  $\mu = 0$  (uncorrelated phases of signal and local oscillator), to  $\mu = 1$  (complete correlation).

Now consider homodyne detection ( $\omega = \omega_0$ ) and write  $\varphi$  as the sum of a mean  $\langle \varphi \rangle$  and a random part  $\varphi_r$ :  $\varphi = \langle \varphi \rangle + \varphi_r$ 

Developing 
$$\mu$$
,  $\mu = \langle \cos(\langle \phi \rangle + \phi_r - \phi_0) \rangle$   
=  $\cos(\langle \phi \rangle - \phi_0) \langle \cos \phi_r \rangle - \sin(\langle \phi \rangle - \phi_0) \langle \sin \phi_r \rangle$ .

As  $\langle \phi_r \rangle = 0$ , also  $\langle \sin \phi_r \rangle = 0$  and if  $\phi_r$  has a regular statistics. So:  $\mu = \cos [\langle \phi \rangle - \phi_0] \langle \cos \phi_r \rangle = \cos \Delta \phi \mu_{\Phi}$ 

Beating signal is multiplied by factor  $\cos\Delta\phi$ , that is, homodyne detection is sensitive to the *in-phase* component with  $\langle \phi \rangle = \phi_0$ ; the *in-quadrature* component with  $\langle \phi \rangle = \phi_0 + \pi/2$  gives a zero output.

#### **Phase fluctuations**

The random part  $\langle \cos \varphi_r \rangle = \mu_{\Phi}$  describes relative phase fluctuations. For  $\varphi_r$  small (<<1 rad), cosine is close to unity and its mean is  $\approx 1$ ; for large  $\varphi_r$  (over  $2\pi$ ), cosine spans from -1 to +1 and mean will be  $\approx 0$ . For small  $\varphi_r$  <<1, developing cosine in series of  $\varphi_r$ :

$$\mu_{\Phi} = \langle \cos \varphi_{\rm r} \rangle = \langle 1 - \varphi_{\rm r}^2 / 2! + \varphi_{\rm r}^4 / 4! + \dots \rangle \approx 1 - \sigma_{\Phi}^2 / 2$$

we see that  $\mu$  is connected to phase variance  $\sigma_{\Phi}$ .



# **Coherent S/N ratio**

In direct detection,  $(S/N)^2_{dir} = I^2 / [2e(I+I_d)B + 4kTB/R]$ and quantum limit is  $(S/N)^2_{dir/q} = I/2eB$  for  $I >> I_d + 4kT/R$ . In homodyne, signal is  $(\sigma A/2Z_0)2\mu EE_0$ , noise is sum of local oscillator and signal shot-noises, plus Johnson noise of load:  $[(\sigma A/2Z_0)2\mu EE_0]^2$  $(S/N)_{hom}^2 = \frac{1}{2e[(\sigma A/2Z_0)(E^2+E_0^2)+I_d]}B+4kTB/R$  $\frac{4\mu^2 I I_0}{2e(I+I_0+I_d)B + 4kTB/R}$ dividing by  $I_0$  and letting  $I_R = 2kT/eR$ ,  $(S/N)_{hom}^{2} = \frac{4\mu^{2} I}{[2e(1+(I+I_{d}+I_{R})/I_{0}] B]}$ 

for  $I_0 >> I_{0q} = I + I_d + I_R$ , the quantum limit is always reached:

# $(S/N)^{2}_{hom/q} = 4\mu^{2}I/2eB$

In coherent detection the Q-L condition is on local oscillator amplitude, *not* on signal amplitude as in direct detection. Making local oscillator  $I_0$ >>I+I<sub>d</sub>+I<sub>R</sub> large enough, Q-L is reached, even at weak signal levels.

Heterodyne detection follows the same arguments, but beating signal is now at the frequency  $\omega - \omega_0$ , so that

 $I_{ph} = 2\sqrt{(I I_0)} \cos \left[(\omega - \omega_0)t + \langle \phi \rangle - \phi_0\right] \langle \cos \phi_r \rangle$  $(S/N)_{het}^2 = 2\mu_{\phi}^2 I I_0 / \left[2e(I + I_0 + I_d)B + 4kTB/R\right]$ 

i.e., it has a modest *penalty* - a factor of 2 (or 3dB) respect to homodyne but does not require the phase adjustment.

# **Condition for coherent detection**

## Requirements:

- н *phase matching* of signal and local oscillator (for homodyne), or beating will be reduced by a factor:  $\cos(\langle \phi \rangle \phi_0)$
- н *phase coherence*, or signal will be reduced by:  $\langle \cos \varphi_r \rangle = \mu_{\phi}$ .
- H superposition of E and  $E_0$  on the PD with *spatial coherence* or beating will be reduced by a factor:

 $\mu_{sp} = \int_{A} E(x, y) \cdot E_{0}^{*}(x, y) dx dy / [\int_{A} |E(x, y)|^{2} dx dy \int_{A} |E_{0}(x, y)|^{2} dx dy ]^{1/2}$ 

- H superposition of E and  $E_0$  with *polarization matching* or signal is reduced by:
  - $\mathbf{E} \cdot \mathbf{E}_0 / |\mathbf{E}| |\mathbf{E}_0| = \mu_{\text{pol}}$  (E,  $\mathbf{E}_0 = \text{Jones matrixes}$ )

All previous expressions are generalized by using  $\mu_{\phi} \rightarrow \mu_{\phi} \mu_{sp} \mu_{pol}$ 

# S/N, BER and photons/bit



#### Photons per bit and modulation

• *homodyne detection* of amplitude modulated (ASK) signal: BER = erfc N/2 $\sigma_{N}$  (N=number of photons per bit)  $N=2(I \cdot I_0)^{1/2}T/e=2(N_s N_0)^{1/2}$   $\sigma_N=(2eI_0/2T)^{1/2}T/e=N_0^{1/2}$ BER = erfc  $\sqrt{N_s}$ then, and for BER=10<sup>-9</sup> we get  $N_s$ =36 p/b •homodyne detection of a phase-modulated PSK signal: BER = erfc  $2\sqrt{N_s}$ , and N<sub>s</sub>=9 p/b •heterodyne detection of a PSK-modulated signal: BER=  $\operatorname{erfc}\sqrt{2N_s}$ , and N<sub>s</sub>=18 *homodyne* detection of a  $4\Phi$ -PSK modulated signal BER = erfc  $2\sqrt{2}N_s$ , and  $N_s=4.5$ 

#### **State-of-the-art receiver sensitivity**



#### **Balanced detector**



#### **Beamsplitter phaseshift**

At a beamsplitter, the continuity condition of electric fields at the separation boundary requires that the incident  $E_i$  is always the sum of reflected  $E_r$  and transmitted  $E_t$  fields:

 $E_i = E_t + E_r$ 

(I)

where the underlines indicate rotating vectors. Also, in a lossless beamsplitter power P is unchanged upon splitting and, as P is proportional to  $E^2$ , we have:

$$E_{i}^{2} = E_{t}^{2} + E_{r}^{2}$$
(II)

To have both equations satisfied, the three vectors must lie on a right-angle triangle, as shown in the figure below. Then, the angle - or phaseshift - between reflected  $\underline{E}_r$  and transmitted  $\underline{E}_t$  vectors is  $\pi/2$  irrespective of the actual splitting ratio, while the angle  $\psi$  between incident and transmitted fields increases from 0 to  $\pi/2$  as  $E_t$  decreases from  $E_i$  to 0 (or, R goes from 0 to 1). We can then write, for the lossless beamsplitter:



 $E_t = \sqrt{(1-R)} E_i e^{i\psi}, \qquad E_r = \sqrt{R} E_i e^{i(\psi - \pi/2)}$ 

For a lossy beamsplitter, Eq.(I) still applies, while (II) holds with the  $\geq$  sign; then point P in the figure shifts internal to the circle and the  $\underline{E}_r \underline{E}_t$  phaseshift becomes larger than  $\pi/2$  (of an angle p/2 $\sqrt{[R(1-R)]}$  where p is the loss).

# **Balanced detectors with input subtraction**



### **Coherent receiver with polarization diversity**



## **Two-frequency heterodyne receiver**

