Basic functions

Photoelectronic conversion of image by a photocathode
conjugation by an electron optics
power gain of the electron image
luminescent conversion of electron image at the phosphor

Classification

Typical ICTs

Magnetic focussing ICT

ICT gain

By a simple photon-energy balance, *irradiance* at phosphor is written as:

 $E_u(x',y') = (h\nu/e) \kappa V_{el} J'(x',y') = (e/h\nu) \kappa V_{el} \sigma E_i(x,y)$

where σ is spectral sensitivity (typ.10-50 mA/W) and κ =n/V is phosphor yield (typ. 30-60 photons per keV), and unity magnification is assumed. The radiant gain G=E_u/E_i of the ICT then follows as:

$$G = (h\nu/e) \kappa V_{el} \sigma = \kappa V_{el} \eta$$

example: with a typ. $V_{el}=10$ keV and $\eta =0.1$, gain is G=30-60. By cascading two or more stages, total gain is the product of stage gains and with 3 stages we can get a gain G=10⁵, enough to view single photoelectrons.

1st generation, fiberoptic faceplate ICT

2nd generation ICT with M CP

3rd generation ICT

Multiplying chain for ICTs

ICT parameteres

Spectral response : all transmission PhC available, with preference of S-20 and S-1 Display characteristics : phosphor P-20 is preferred, has medium persistence (0.35 ms), good yield(κ =80 ph/keV) *Radiant gain* $G=E_{\mu}/E_{i}$: reference source is the 2850 K lamp (as representative of artificial illuminance and of residual illuminance of natural scenes at dark Response dynamic range : ratio of max. to min. reproduced illuminance, is given by $E_{sat}/G_{ICT}EBI$, where E_{sat} =screen saturation level, G_{ICT}=gain and EBI=equivalent background illuminance (typ. 10⁻⁷ to 10⁻⁴ lux) *Linearity* : E_{μ} =K E_{i} can reach a conformity better than 1% f or an individual pixel, but from pixel to pixel K may vary over $\pm 10\%$, because of PhC and PS disuniformity Spatial resolution : is described by the MTF; total limiting resolution is about 50 cycles/mm.

ICT resolution: MTF contributions

ICT resolution: stages and types

X-ray ICT

Streak-camera

Multiple-frame, ultrafast photography ICT

