Photodetectors and their Spectral Ranges

		S	SINGLE E	LEMENT		IMAG	E		
- photoemission devices		V g	vacuum photodiode			pickuj	pickup tubes		
photoelectric devices)			photomultiplier				and converters		
- internal photo devices	pelectric	s a	emicondu valanche	ctor photod	iode	CCI	Ds		
		p p	hototrans hotoresist	istor (BJT, tance	FET)	vidic	on		
- thermal detect	ors	tł	hermocou	ple (or phot	copile)			
		tł	hermistor	(or bolome	ter)	uncoo	led IR FPA		
		р	yroelectri	С		IR vic	licon		
- weak interaction	1	p	hoton drag	, Golay cell					
aetectors		p p	point contac	et diode					
0.1µm	1µ	ım	10)μm	100µ1	n	(λ)		
—photoemission — —internal photoelectric effect ——									

Power collected P = hv Fis a flux F of photons of energy hvOutput current I = e F'is a flux F' of electrons of charge e

Then, current is proportional to power,

$$I/P = \sigma = e F' / hv F = \eta (e / hv)$$

where $\eta = F'/F$ is quantum efficiency (electrons-to-photons)

and
$$\sigma = I/P = \eta (\lambda e /hc) = \eta (\lambda /1.24) [A/W]$$

is spectral sensitivity (current out -to-power in)

To trade photons for electrons we need a material requiring an energy not larger than the photon energy, so $hv \ge E_{cc}$, where energy E_{cc} for the charge carrier generation is E_W (work function) in external and E_G (bandgap) in internal photoemission. This is the threshold condition: $hc/\lambda \ge E_{cc}$ or

 $\lambda \leq \lambda_{\rm t} = {\rm hc/e}E_{\rm cc} = 1.24 / E_{\rm cc} (eV)$

In alkaline antimonides, $E_W \approx 1.2-3.0 \text{ eV}$, and $\lambda_t \approx 1-0.4 \text{ }\mu\text{m}$ (blue to NIR) ternaries (InGaAs) $E_G \approx 0.75 \text{ eV}$, $\lambda_t \approx 1.8 \text{ }\mu\text{m}$ InSb $E_G \approx 0.25 \text{ eV}$, $\lambda_t \approx 5 \text{ }\mu\text{m}$ (MIR) HgCdTe $E_G \approx 0.08 \text{ eV}$, $\lambda_t \approx 16 \text{ }\mu\text{m}$ (FIR)

general response curve of a quantum detector: at P=cons, current increases linearly with λ , then sharply decreases to 0 at the photoelectric threshold a real detector has a curve rather than a triangle

Once produced, we shall remove charge carriers fast, so we need very thin layers to cross or a favorable electric field helping collection photocathodes

pn junction in a diode base-collector junct of BJT gate-drain junct in a FET depleted layer in a MOS 3rd junct in a SCR applied field in a resistance

TYPES OF PHOTOCATHODES

PHOTOEMISSION PROCESS

i) photon absorption and generation of an electron-hole pair
ii) diffusion of the electron to the surface
iii) emission of the electron in the vacuum

ABSORPTION and DIFFUSION

Photocathode responses

EFFICIENCY CALCULATION

$p(L) = (1/\Lambda) \exp -L/\Lambda$;	$p(\theta)=1/2\pi$	$p(z) = gauss(z,\Lambda) = [1/\gamma]$	$(2\pi)\Lambda$] exp $-z^2/2\Lambda^2$				
$\langle l \rangle = l_f \sqrt{(\Delta E / \Delta e_f)}$		$p_1(E,z) = p(E-\Delta e) g$	$gauss(z, \Lambda)$				
$\Pi(z) = escape prob$	ability	$p_2(E,z) = p(E-k\Delta e) gauss(z,\sqrt{2\Lambda})$					
$\eta_e = \int_{0-\infty} \Pi(z) \alpha \exp(i \theta z)$	o-αz dz,	$p_k(E,z) = p(E-k\Delta e) \text{ gauss}(z,\sqrt{k\Lambda})$					
$\Pi(z) = \int_{EA-\infty} dE$	$\int_{z-\infty} [\Sigma_{k=0-\infty}]$	p _k (E,z')] dz'					
$\Pi(d-z) = \int_{EA-\infty} dz$	$\mathrm{E}\int_{(\mathrm{d-}z)-\infty}[\Sigma_{\mathrm{I}}]$	$_{k=0-\infty} p_k(E,z')] dz'$					

BAND BENDING AT THE SURFACE

NEGATIVE AFFINITY

PHOTOCATHODE PARAMETERS

material		E _g	EA	Е	E	λ	α	η_{max}	J _{dark}
	SD	(eV)	(eV)	(eV)	(eV)	(µm)	(µm ⁻¹)	(%)	(A/cm^2)
Na ₃ Sb		1.1	2.2	3.3	<4.3	.37	60	2	
K ₃ Sb		1.1	1.5	2.6	<3.7	.48	30	7	
Rb ₃ Sb		1.0	1.2	2.2	3.0	.57	30	10	
Cs ₃ Sb	S-11	1.6	0.45	2.05	2.0	.60	50	25	1 f
Na ₂ K Sb	S-24	1.0	1.0	2.0	3.0	.62	100	30	<0.1f
[Cs]Na ₂ K Sb	S-20	1.0	0.55	1.55	3.0	.80	100	35	1 f
Ag-O-Cs	S-1			≈ 1		1.2		1	1 p
Cs_2Te				3.7	5.0	.31		30	_
GaAs [Cs ₂ O]		1.42	<0	1.4		.87		25	0.3 f
$Ga_{x}In_{1-x}As$ [C	Cs]	1.1	<0	1.1		1.1		10	5 f
other semicond	luctors	:							
Si		1.1	4.1	5.2	1.8			0.04	
Ge		0.7	4.5	5.2	1.5-2			0.08	

Notes: SD = standard international (EIA) designation of spectral response and window type;

 η_{max} = quantum peak efficiency (at $\lambda = \lambda_{max}$) for reflection photocathodes;

 α = optical absorption coefficient at $\lambda = \lambda_{max}$; J = dark current density,

in pico- or femto-ampere per cm² of photocathode surface (at 300 K).

TRANSMISSION PHOTOCATHODES

REFLECTION PHOTOCATHODES: UV-cutoff of a 3-mm thick window

REFLECTION PHOTOCATHODES

TEMPERATURE COEFFICIENT OF SPECTRAL SENSITIVITY

DARK CURRENT vs WORKFUNCTION

DARK CURRENT TEMPERATURE COEFFICIENT

PHOTOCATHODE FABRICATION

Common features:

a high-vacuum process (10⁻⁶ torr) surface contaminants control very critical medium-temperature thin film deposition

Bi- and tri-alkaline fabrication:

Sb evaporated first, (6 nm in transm. photocath), K in the stoichiometric ratio (K_3SB) ** then Na adding K and Sb in turn to have Na₂KSb ** last Cs or Cs-O **

** = maximizing photoresponse

PHOTOCATHODE FABRICATION

Typical apparatus for photocatode fabrication

Picture

to be

added

PHOTOTUBES (or vacuum photodiodes)

PT with hemicylindrical reflection photocathode (left) and with transmission photocathode on a plane input window

PHOTOTUBES

PHOTOTUBES: speed of response

Transit time:

 $\tau_d = d \ (2m/eV_{ak})^{1/2} = 33.7 \text{ ns} \ d_{[cm]} \ (V_{ak})^{-1/2}$

Dispersion: $\Delta \tau$ is a fraction of τ_d

Frequency cutoff:

 $f_2{=}0.44/{\Delta\tau}$ (intrinsic cutoff), or

$$f_2 = 1/2\pi RC_a$$
 (extrinsic cutoff)

TYPICAL FAST PHOTOTUBE

A fast phototube (rise time 100 ps or bandwidth 3 GHz) with transmission photocathode (S-1, S-11 or S-20) on a glass or quartz window and 50-Ohm output electrode. Top: device structure; bottom: bias circuit. With the field grid, speed of response is limited by the dispersion Δt rather than by the transit time τ_d

GAS PHOTOTUBE

Ionization in a low-pressure gas filling the tube is a mechanism to increase photoelectron number. Internal gain is typically G=5-20

Gas phototubes are used in industrial flame control