# Solar Energy

the great promise of renewable source of energy serving mankind in 2nd millenium, but requires:

- large areas (a 1-km<sup>2</sup> at  $\eta$ =10% gives only 100 M W<sub>p</sub>)
- cost reduction (target cost of 1\$/W hardly met)
- big effort in semiconductor mass production (yearly worldwide Si devices production covers just 1-km<sup>2</sup> of cell)
  However, SE is already viable for:
- space applications (electrical supply of satellites)
- small utilities (radio repeaters, developing countries, etc.)
- small equipment in alternative to battery supply (watches, hand-held computers, toys, etc.)

### Solar cells vs solar panels

- Solar cells are those converting sun radiation into electrical energy efficiency is low (typ. η=10-15%), but energy produced is valued it is *free* energy (as if is at T=∞)
- Solar panels are widely used to convert sun radiation into a heat quantity with high efficiency (typ. 90-95%) but energy has low value it is *heat* with small  $\Delta T$  (typ.  $\Delta T=30^{\circ}C$ )

*Exergetic efficiency* establishes a firm base for comparing cell value from a thermodynamic point of view:  $\eta_{exerg} = \Delta T/T \eta_{syst}$ . This puts solar cell first: a solar cell operating a heat pump generates more energy than a solar panel

#### **Electrical parameters**

From basic diode Shockley's equation

$$I = I_o [exp (V/nV_T) - 1] - I_{ph}$$

cell short-circuit current is :

$$\mathbf{I}_{cc} = -\mathbf{I}_{V=0} = \mathbf{I}_{ph}$$

and open-circuit voltage is:

$$V_{oc} = V|_{I=0} = E_g + V_T \ln(1 + I_{ph}/I_{oo}) \approx E_g + V_T \ln(I_{ph}/I_{oo})$$

where  $E_g = eE_g$ , and reverse current is

$$I_o = I_{oo} \exp -E_g / V_T$$

electrical power supplied to the load,  $P_e = |V \cdot I|$ , is written with  $V_{oc}$  and  $I_{cc}$  by introducing the *fill-factor* FF of the I/V characteristic:

$$FF = V \cdot I / V_{oc} \cdot I_{cc}$$
$$P_e = V_{oc} \cdot I_{cc} FF$$

so that

## V/I characteristics of a solar cell



#### **Fill factor**



Fill-factor FF vs the photogenerated current ( $E_g=1eV$ , T=300 K). In concentration systems,  $I_{ph}/I_{00}$  is proportional to C

#### Solar spectrum



### **Efficiency vs bandgap**



## **Intrinsic and extrinsic losses**

*intrinsic*:

- reflection loss at input interface, decreased by ARC but still causing a reduction factor of  $\eta_r = 0.7-0.9$
- incomplete photon dissipation in the depletion region, with a typical value  $\eta_d = 0.8-0.9$
- voltage drop loss across the junction and contacts resistance, usually  $\eta_s = 0.7$ -0.9 at C=1

#### extrinsic:

- incomplete filling of available area A, when cells are assembled in a panel ( $\eta_a = 0.78$  for round cells)
- series/parallel electrical interconnection, where the cell with the lowest  $\eta$  dictates the module  $I_{cc}$  (typ.  $\eta_e$ = 0.6-0.9)
- electrical load conditioning by means of a dc/ac converter or a battery to store energy produced during peak hours ( $\eta_{ext}=0.7-0.8$ )

total system efficiency seen by the user:  $\eta_{sys} \approx 8-9\%$  for Si cells

## **Structures**



## **Materials**

- Si: monocrystalline
- Si: polycrystalline (poly-Si solar-grade)
- Si: amorphous hydrogenated (a-Si:H)
- GaAs/GaAlAs: monocrystalline
- ZnS, PbS: thin film, quasi-polycrystalline
- Polymer (?)

# **Poly-Si ribbon pulling**



#### a-Si structure



effect of hydrogenation on dangling bonds

## a-Si bands



#### **Systems**

- direct-exposure systems
- systems with concentrator optics
- tandem and multispectral-cell systems

In *direct -exposure* systems, cell module is aimed to south with an azimuth angle  $\theta_p$  to maximize collected energy  $E_{dc}$  during the time period T of interest (day, season or year):

$$E_{dc} = A \int_{T} E_{S}(\lambda, AM) R_{a}(t) \eta(\lambda) \cos \theta(t) dt$$

## **Concentration systems**



### **Tandem cells**



Multi-spectral cells

