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Chapter 1

Introduction

Since 1950, when Hamming published the first work on parity bits [86], a lot

of coding theories have been developed. As the technology enhancements took

place, the range of coding architectures grew up as the variety of transmission

requirements as well. Thus, modern coding theory has to face a lot of chal-

lenges that can be summarized asin the following:performance has to approach

as much as possible the channel capacity, minimizing at the same time some

parameters such as decoding complexity (and therefore decoding delays), area

occupation, non-linear behaviors, bandwidth waste, power consumption, etc.

Among the families of capacity approaching codes, low-density parity-check

(LDPC) codes are especially attractive and play a fundamental role in modern

communications. LDPC codes [1] are linear codes characterized by a sparse

parity-check (PC) matrix, H , having M rows and N columns. A LDPC

code is either regular or irregular depending on its row and column degree-

distributions. Regular LDPC codes have a PC matrix in which all rows (and

columns) present equal weight, while irregular LDPC codes do not exhibit this

property.

Non-binary (or q-ary) LDPC codes have codewords (and therefore a PC

matrix) whose symbols are elements of the Galois field GF (q), with q > 2.

These q-ary LDPC codes typically have steeper bit-error-rate waterfall curves,
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6 CHAPTER 1. INTRODUCTION

while the decoding complexity is O(Ntq2), where N is the blocklength, t is the

average column weight, and q is the alphabet size [3], [4].

q-ary LDPC codes are definitely interesting since they can be employed in a

wide range of applications, merging benefits and performance of both inner and

outer codes used in more traditional architectures. Further, given their peculiar

graphical structure and decoding method, they have a great potential in order

to improve the error-rate performance in the waterfall region, to lower the

error floor and to generate powerful structured codes. Therefore, q-ary LDPC

codes have represented the main course of the whole Ph.D. program. In fact,

design and decoding algorithms for q-ary LDPC codes have been developed,

implemented and simulated during the past three years.

The thesis is structured as follows. Chapter 2 introduces some q-ary LDPC

code design methods that can improve performance for specific requirements

such as spectral efficiency, error floor control and burst error correction capa-

bility. Chapter 3 provides a comparison between the most relevant detection-

and-decoding architectures for q-ary LDPC codes over partial response (PR)

channels. Further, it presents a brand new receiving structure for joint detec-

tion and decoding over the aforesaid channels. Chapter 4 introduces prospec-

tive scenarios of practical employment of q-ary LDPC codes, according to the

developed activity during the Ph.D. program. Chapter 5 delivers the final

remarks.



Chapter 2

Design of q-ary codes

It is well known how a proper design of LDPC codes strongly infer on the

performance of the given codes itself. Several construction algorithms (for

instance, [18], [44], [31]) aim at fitting the given code to specific requirements,

such as error-rate performance in the low and the high signal-to-noise ratio

(SNR) region, error burst correction, etc. Given the peculiar graph structure

and the decoding method, designing q-ary LDPC codes is fundamental to

achieve the desired results. The next Sections introduce several construction

algorithms that aim at facing some important communication problems.

Specifically, in recent times the need of spectral efficiency has become a

relevant topic for many communication systems, especially for wireless services.

In order to achieve the best trade-off between bandwidth occupancy and error-

rate performance, several structures that involve large constellations have been

proposed in literature. Section 2.1 focuses on LDPC-coded systems using 16-

QAM constellations on a channel affected by additive white Gaussian noise

(AWGN). The LDPC codes that have been used include both binary and non-

binary systems. In order to be compared, they have been designed such that

they are equivalent in terms of blocklength, rate and average column weight.

Simulation results show how the structure that involves a q-ary LDPC code

outperforms the other schemes: new possible scenarios to be analyzed are then
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8 CHAPTER 2. DESIGN OF Q-ARY CODES

introduced.

Further, Section 2.2 introduces a protograph-based method for designing

q-ary LDPC codes for use with modulations larger than quadrature phase

shift keying (QPSK). Simulations focus on a GF (16), 16-QAM example. The

proposed construction method achieves the maximum gain when the average

column weight is chosen so that the linear minimum distance growth property

is satisfied. In this region, the benefit of a protograph-based design over a stan-

dard progressive edge-growth (PEG) approach was 0.3 dB. It is shown that

a careful field-element selection algorithm provides about 0.1 dB of improve-

ment over random field-element selection. Overall, the proposed improvements

yielded 0.4 dB of gain over a PEG-based GF (16) code with randomly selected

Galois field elements. The performance of this baseline GF (16) code was

comparable to the best known binary LDPC code for 16-QAM, so that the

proposed improvements allow the GF (16) LDPC code to outperform known

binary approaches.

On the other hand, Section 2.3 introduces construction methods for design-

ing q-ary LDPC codes with low error floors and moderate field order. These

algorithms are based on a deep geometrical and graphical analysis of the q-

ary LDPC decoding problem. Specifically, decoding failures and characteristic

topological structures can be related. Thus, enlarging the size of the aforesaid

topological structures provides substancial improvements in terms of error-rate

performance over other construction algorithms. Simulation results show how

q-ary LDPC codes constructed by means of the proposed algorithms have error

floors that are orders of magnitude lower than those of codes based on other

known algorithms.

Finally, an optimized design of q-ary LDPC codes that takes into account

their burst error correction capability has been considered. In recent works,

the performance of LDPC decoding in presence of noise bursts has been related

to the structure of the parity-check matrix. In particular, two approaches to

characterize the burst error correction capabilities have been proposed in the
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literature. Following these ideas, different matrix designs are compared in

Section 2.4 in order to choose the best matrix constraints to be maximized

in a PEG construction. Several non-binary LDPC codes generated with the

proposed design methods are compared. Their performance are analyzed in the

context of magnetic recording channels, where they are considered a promising

alternative to the Reed-Solomon (RS) codes.

2.1 Spectrally efficient LDPC coded modula-

tions

In order to achieve the best possible error-rate performance, capacity-approaching

codes such as Turbo-Codes (TC) [2] and LDPC [1] codes have been adopted

by a multitude of systems - with applications ranging from storage to optical

communications.

Using their bipartite graph representation, [5] and [23] showed that LDPC

codes may perform very close to capacity on AWGN channels and achieve

capacity on binary erasure channels. Therefore, it is natural to ask if LDPC

codes can improve the bit-error-rate performance of a code in a communication

system that has several requirements from high bandwidth efficiency to high

coding rate.

In fact, with an ever-increasing demand for wireless services, the need for

spectral efficiency in data communications has become an important topic. To

alleviate the crowding of the radio-frequency spectrum, it is desirable to make

more efficient use of currently allocated frequency bands. Historically, the most

popular scheme to improve bandwidth-efficiency has been to utilize higher-

order modulation. This approach allows more bits per transmitted symbol,

but the higher symbol density requires increased SNR to achieve acceptable

bit-error-rate (BER) performance.

In order to find the system that guarantees the best trade-off between error-
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rate performance and spectral efficiency, three different LDPC code architec-

tures have been analyzed on the AWGN channel, paying particular attention

to the properties of the LDPC code selected for each one. These systems are

the Turbo-like architecture, the Multilevel Coding architecture, and the q-ary

LDPC Coded architecture. In each of these architectures, the basic system

model is as follows: the input to the modulator is encoded by a LDPC code

whose properties depend on the particular architecture under consideration.

At the receiver, the received signal is sent to the LDPC decoder. Depending on

the transmitter architecture that was used, the receiver decodes the signal in

an appropriate manner. In the three different architectures that are discussed,

the first two are based on binary LDPC codes, while the last one is based on

a q-ary LDPC code.

All the LDPC codes used in this section have been constructed using quasi-

regular PC matrices [20], [22] generated by the PEG algorithm [18]. Quasi-

regular PC matrices are defined as follows: given a rate R, and the average

column weight (i.e. the average variable-node degree in the Tanner graph), dv,

the average row weight (i.e. the average check-node degree), dc, is computed

as:

dc =
dv

1−R
. (2.1)

Furthermore, the variable-node degree distribution is computed as:

f(dv = j) =





⌊dv⌋ − dv + 1 if j = ⌊dv⌋

⌊dv⌋ − dv if j = ⌊dv⌋+ 1

0 otherwise,

(2.2)

where f(dv = j) represents the fraction of columns with weight j in the given

PC matrix, and ⌊z⌋ is defined as the largest integer less than or equal to z.
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Analogously, the check-node degree distribution can be computed as follows:

f(dc = j) =





⌊dc⌋ − dc + 1 if j = ⌊dc⌋

⌊dc⌋ − dc if j = ⌊dc⌋ + 1

0 otherwise.

(2.3)

Here, f(dc = j) represents the fraction of rows with weight j in the given PC

matrix.

The next three subsections introduce the three coding architectures con-

sidered in this section: the Turbo-like, Multilevel Coding, and q-ary LDPC

Code architectures respectively.

2.1.1 The turbo-like architecture

In this subsection, an LDPC-coding architecture that employs a turbo-like re-

ceiver (TLR) is considered. A block diagram of the receiver is given in Figure

2.1. In this turbo-like architecture, the transmitted signal is a binary LDPC

codeword that has been properly mapped to the constellation associated with

the given higher-order modulation scheme. At the receiver, a soft detector

incorporates extrinsic information provided by the binary LDPC decoder, and

the LDPC decoder incorporates soft information provided by the detector.

Extrinsic information between the detector and decoder is exchanged in an

iterative way until an LDPC codeword is found or a maximum number of iter-

ations are performed [4], [12]. With LDPC codes, convergence to a codeword

is easily detected by the receiver when the parity check equations are satisfied.

The decoding employs the message passing (MP) algorithm, which is described

in detail in [3], [4].

In this turbo-like architecture, the received vector, y, is demapped by a

log-likelihood ratio (LLR) calculation for each of the coded bits included in

the transmitted vector x. The extrinsic information provided by the detector

is the difference of the soft-input and soft-output LLR values for the coded

bits. For the κ-th coded bit of x, xκ, the extrinsic LLR value of the estimate
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Figure 2.1: Turbo iterative detection-and-decoding receiver for an LDPC coded system

of xκ is computed as follows:

LD(xκ) = log
P (xκ = +1|y)

P (xκ = −1|y)
− log

P (xκ = +1)

P (xκ = −1)

= log
P (xκ = +1|y)

P (xκ = −1|y)
− LC(xκ), (2.4)

where LC(xκ) is the extrinsic information of xκ computed by the LDPC decoder

in the previous turbo iteration. Note that the decoder sets LC(xκ) = 0 at the

first iteration.

Assuming the bits associated with x are statistically independent of one

another, the a priori probability P (x) can be expressed in the following way:

P (x) =
N∏

i=1

P (xi) =
N∏

i=1

[1 + exp(−xxi · LC(xi))] , (2.5)

where xxi corresponds to the value (either +1 or -1) of the i-th bit in the vector

x.

2.1.2 The multilevel coding architecture

This subsection considers a multilevel coding architecture. In [11], the authors’

idea of multilevel coding (MLC) is to protect each address bit, xi, of the
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constellation points by an individual binary code, ξi, at level i. At the receiver,

each code ξi is decoded individually starting from the lowest level: if the

decisions from prior decoding stages are taken into account, this procedure is

called multistage decoding (MSD), otherwise, it is called parallel independent

decoding (PID). Figures 2.2 and 2.3 show MSD and PID respectively. In terms

of transmission rate flexibility, the MLC approach outperforms Ungerboeck’s

trellis coded modulation (TCM) [8,9], since the size of the signal constellation

is separated from the code rate. Moreover, any kind of code can be used as

constituent code.

A generalization of the approach in [11] is to use q-ary constituent codes

based on non-binary partitioning of the signal set. However, using binary codes

in conjunction with multilevel codes turns out to be asymptotically optimal.

In order to choose the best rate for each constituent code, Huber et al. [13] and

Kofman et al. [14] proved that the capacity of the adopted modulation scheme

can be achieved by multilevel codes together with MSD if and only if the

individual rates of the constituent codes are chosen properly. In these papers,

it is assumed that the signal points are equiprobable and the partitioning is

regular. In [10], the authors generalized these results to arbitrary signaling and

labeling of signal points by means of the chain rule for mutual information.

In this manner, it is possible to create a model with virtually independent

parallel channels for each address bit at the different partitioning levels. These

partitioning levels are called equivalent channels.

In order to better understand the idea beneath this concept, consider the

previously described modulation scheme with L = 2λ signal points. Since each

of the signal points exists in a L-dimensional signal space, every signal point

is taken from the signal set T = {τ0, τ1, . . . , τL−1} where T ⊂ RL (R being

the field of real numbers). The channel output signal points come from the

alphabet Y = RL.

Each possible input binary vector x = [x0, . . . , xλ−1] is then mapped into

a signal point. Since the mapping has to be bijective in order to create an
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Figure 2.2: Multistage decoding for 16-ary modulation

Figure 2.3: Parallel independent decoding for 16-ary modulation
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effective error-correcting code, the mutual information, I(Y ;T ), between the

transmitted signal point τ ∈ T and the received signal point y ∈ Y equals the

mutual information, I(Y ;Xλ−1
0 ), between the mapper binary input x ∈ {0, 1}λ

and the received signal point y ∈ Y . Xb
a is [Xa, Xa+1, . . . , Xb].

Applying the chain rule of mutual information, it is possible to obtain the

following:

I(Y ;T ) = I(Y ;Xλ−1
0 )

= I(Y ;X0) + I(Y ;X1|X0) + . . .

+ I(Y ;Xλ−1|X
λ−2
0 ). (2.6)

Essentially, this shows that the transmission of binary vectors over the physical

channel can be separated into the parallel transmission of each single bit xi

over λ equivalent channels with x0, . . . , xi−1 known. In other words, the mu-

tual information I(Y ;Xκ|X
κ−1
0 ) of the κ-th equivalent channel can be easily

calculated as the following:

I(Y ;Xκ|X
κ−1
0 ) = I(Y ;Xλ−1

κ |Xκ−1
0 )− I(Y ;Xλ−1

κ+1 |X
κ
0 ). (2.7)

Since the different subsets at one partitioning level may not be symmetric,

the mutual information I(Y ;Xκ, . . . , Xλ−1) is calculated by averaging over all

possible combinations of xκ−10 = x0, . . . , xκ−1. Specifically:

I(Y ;Xλ−1
κ |Xκ−1

0 ) = Exκ−1
0 ∈{0,1}κ

[
I(Y ;Xλ−1

κ |xκ−10 )
]
. (2.8)

Since the physical channel is characterized by the set {fY (y|τ)|τ ∈ T} of

conditional probability density functions of the received point y given the trans-

mitted signal point τ , assuming the bits in the lower levels, xκ−10 , are fixed,

the κ-th equivalent channel is characterized by the pdf fy(y|xκ, x
κ−1
0 ).

The underlying signal subset for the equivalent κ-th modulator is given

by T (xκ−10 ), which denotes the partition of the signal set with the set of bits

xκ−10 in common. Since the binary symbol xκ is potentially represented several

times in this subset, the signal point τ is in effect chosen uniformly from the
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subset T (xκ0). Therefore, fY (y|xκ, x
κ−1
0 ) is given by the expected value of the

pdf fY (y|τ) over all signal points τ out of the subset T (x
κ
0), as follows:

fY (y|xκ, x
κ−1
0 ) = Eτ∈T (xκ

0 )
[fY (y|τ)]

=
1

P (T (xκ0))

∑

τ∈T (xκ
0 )

P (τ) · fY (y|τ). (2.9)

The κ-th equivalent channel is completely characterized by a set of prob-

ability density functions fY (y|xκ) of the received point y if the binary symbol

xκ is transmitted. Moreover, since the subset for transmission of symbol xκ

depends on the symbols at levels 0 through κ− 1, the set of pdf’s, fY (y|xκ), is

the set of fY (y|xκ, x
κ−1
0 ) for each possible combination of xκ−10 . Specifically:

fY (y|xκ) =
{
fY (y|xκ, x

κ−1
0 )|xκ−10 ∈ {0, 1}κ

}
. (2.10)

The multilevel coding approach together with its multistage decoding pro-

cedure is a consequence of the chain rule described in (2.6). The binary symbols

xi, i = 0, . . . , λ−1, come from independently encoding different data symbols.

Each binary encoder generates words xi = [xi1 , . . . , xiN ] of the component code

ξi, where xij ∈ {0, 1} ∀j ∈ {1, . . .N}.

From a theoretical point of view, MLC allows the constituent codes to

differ in form and even blocklength, as long as each is operating sufficiently

close to the capacity of its layer. However, in thi section each constituent code

is assumed to be a LDPC code and each layer uses a constituent code with

N output bits. Regardless of blocklength, it is still possible to define different

rates for every ξi, resulting in different lengths of the encoder inputs, denoted

Ki.

Using this notation, the rate of the i-th encoder is defined as Ri = Ki/N .

The codeword symbols, xij ∈ xi, form the the binary address xj =
[
x0j , . . . , xλ−1j

]
,

which is mapped to the signal point τj ∈ T , with |T | = 2λ. The code rate, R,

of this scheme is equal to the sum of the individual code rates, Ri, as follows:
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R =
λ−1∑

i=0

Ri =
λ−1∑

i=0

Ki

N
. (2.11)

As determined by the MSD procedure, the constituent codes ξi are succesively

decoded by the corresponding decoders, Di (Figure 2.2). At the i-th stage, Di

processes the block, y = [y1, . . . , yN ] (yj ∈ Y ), of received signal points using

the decisions, x̂l, from the i previous decoding stages (i.e. l = 0, . . . , i− 1).

This procedure necessarily introduces delays in the decoding process: here

their effects associated with such a structure are not considered. In order to

satisfy the chain rule (2.6) and preserve the mutual information, the estimated

symbol, x̂l, is required to equal to the transmitted symbol, xl. Therefore, if it

is assumed that error free decisions are generated by the decoders, Di, MSD

can be interpreted as an implementation of the chain rule (2.6), and hence is

mutual information preserving.

In order to approach channel capacity, it is necessary to maximize the

mutual information over all controllable parameters. Usually, these are the

a priori probabilities of the signal points. Therefore, a specific channel-input

probability distribution, P (τ), is required in order to achieve the channel ca-

pacity, C. These probabilities can not be optimized independently for each

individual level, and hence the entire signal set must be considered. The ca-

pacity of the i-th equivalent channel, Ci, is given by the respective mutual

informations, I(Y ;Xi|X
i−1
0 ), corresponding to the channel input probabilities.

Ci is then given as follows:

Ci = I(Y ;Xi|X
i−1
0 )

= Exi−1
0

[
C(T (xi−10 ))

]
− Exi

0

[
C(T (xi0))

]
, (2.12)

where C(T (xi0)) denotes the capacity when using the subset T (x
i
0) with a priori

probabilities P (τ)/P (T (xi0)). At this point, it is possible to determine the

capacity C = C(T ) for a 2λ-ary digital modulation scheme given the a priori
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probability distribution, P (τ), of the signal points τ ∈ T . In particular, C is

equal to the sum of the capacities of the equivalent channels, Ci, in the MLC

scheme:

C =
λ−1∑

i=0

Ci. (2.13)

The capacity, C, can be approached via MLC-MSD if the individual rates,

Ri, are chosen to be arbitrarily close to (but not greater than) the capacities

of the equivalent channels Ci.

In order to lower the latency of the MLC system, a different decoding

scheme has been studied in [7] and [10]. In the MLC with parallel indepedent

decoding structure, each decoder Di does not use the decisions of the other

levels j 6= i (Figure 2.3). In [10], the authors showed how the mutual informa-

tion of the modulation scheme can be approached with MLC-PID if and only

if the rate Ri of each code is set in order to fulfill Ri = I(Y ;Xi). Moreover,

they showed that the MLC-PID approach represents a suboptimal solution of

an optimum coded modulation scheme and that the capactiy of such a scheme

strongly depends on the particular labeling of signal points. However, they

also showed how the gap to an optimum scheme can be very small using a

Gray labeling of the signal points.

2.1.3 Combination of q-ary LDPC codes and q-ary Mod-

ulation

In this final architecture that is analyzed, LDPC codes over GF (q) (q = 2p, p

a positive integer) are combined with q-ary modulation to achieve bandwidth-

efficient transmission (Figure 2.4). For a chosen code rate, R, and a block-

length, N , it is necessary to find a PC matrix, H = {hij}i=1,...,M,j=1,...,N , where

hij ∈ GF (q) and R = 1−
M

N
. In this manner, the K = NR information sym-

bols and the M parity symbols are encoded into a q-ary vector x ∈ GF (q)N .
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After q-ary LDPC encoding, the N elements of x are mapped into the mod-

ulated sequence s = {sj}j=1,...,N . This sequence depends on the address given

by xb =
{
xjb
}
j=1,...,N

, where xjb =
{
xjbk
}
k=0,...,p−1

is the binary representation

of the non-binary codeword symbol xj . Therefore, the bandwidth efficiency of

this structure is equal to R · p.

Figure 2.4: Block diagram of the structure that combinates q-ary LDPC code and q-ary

modulation

At the receiver, the output of the AWGN channel may be expressed as:

yκ = sκ + nκ = (sκI
+ jsκQ

) + (nκI
+ jnκQ

) = yκI
+ jyκQ

, (2.14)

where κ = 1, . . . , N and nκI
, nκQ

are two independent noises with the same

variance, σ2, related to the in-phase and quadrature component of the mod-

ulated signal. Starting with P (yκ|sκ), and using the Bayes’ theorem [20], the

a posteriori probability distribution can be written as:

P (sκ|yκ) =
1

2πσ2
exp

(
−
(yκI

− sκI
)2 + (yκQ

− sκQ
)2

2σ2

)
. (2.15)
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The probabilities in (2.15) are used to initialize the message passing algo-

rithm in the decoder [3]. It is worth to note that the computational complexity

of the algorithm provided by [3] may be reduced by employing Fast Fourier

Transform (FFT) or the Fast Hadamard Transform (FHT) approach [20].

2.1.4 Simulation results

In this section, simulation results obtained by implementing the three struc-

tures introduced in the previous sections are discussed. In each of these imple-

mentions, a Gray-mapped 16-QAM modulation and a global bandwidth effi-

ciency of 2 bits/symbol (i.e. a coding rate equal to 0.5) are taken into account.

The next subsections introduce the simulation results obtained depending on

the input blocklength.

Input blocklength set to 5000 bits

The input blocklength was initially set to 5000 bits per codeword. For the sys-

tem described in subsection 2.1.1, the binary LDPC code had then blocklength

N = 10000 and rate 0.5. The variable-node degree distribution, following the

notation introduced in [21] and [22] and according to (2.2) and [20] , was λ8 =

0.2 and λ9 = 0.8, where λ(x) =
∑dv

i=2 λix
i−1, and dv is the maximum symbol-

node degree. In what follows, the maximum number of iterations between the

soft-detector and the LDPC decoder is set to 30 [12].

In order to make a fair comparison between architectures, the PC matrix of

the 16-ary LDPC code used in the architecture introduced in subsection 2.1.3

also had a rate equal to 0.5, while the blocklength N was set to 2500 symbols,

and the variable-node degree distribution was λ2 = 0.8 and λ3 = 0.2 [20]. For

this decoding architecture and the MSD architecture, the maximum number

iterations performed by the LDPC decoder has been set to 25.

The MLC structure is defined by 4 = log2(16) binary LDPC codes corre-

sponding to each address bit. They each had initially blocklength N = 2500
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and variable-node degree distribution λ2=0.8 and λ3=0.2. Each rate is de-

fined to be [R0, R1, R2, R3] = [0.337, 0.663, 0.337, 0.663] in the MSD case and

[R0, R1, R2, R3] = [0.349, 0.651, 0.349, 0.651] in the PID case. These values

agree with the ones in [7], since 16-QAM can be interpreted as product of two

indepedent 4-PAM costellations.

The simulation results plotted in Figure 2.5, 2.6 with the dashed line show

how the q-ary LDPC code architecture from subsection 2.1.3 outperforms the

binary LDPC turbo-like architecture of subsection 2.1.1. In particular, the

gain is about 2.5 dB in terms of signal-to-noise ratio. Moreover, the MLC

architectures outperforms the turbo-like architecture, however they do not

perform as close to capacity as the q-ary LDPC coded architecture introduced

in subsection 2.1.3.

Further, for sake of an overall view on the spectrally efficient coded modu-

lations, in Figure 2.5 the performance of the LDPC coded MLC-MSD structure

on a 4-PAM modulation exposed in [7] have been plotted in dash-dot line.

The authors in [7] proposed two architectures having a coding rate equal

to 1/2, an input blocklength fixed to 5000 bits and based respectively on an

optimized LDPC code and a quasi-regular LDPC code.

In order to better exploit the influence of the codeword length of each

subcode in the layered structures, a MLC-MSD architecture involving two

subcodes with rates [R0, R1] = [0.337, 0.663] and input blocklengths fixed at

2500 bits per layer has been set up as well.

Given the simulation results (Figure 2.5), the QR structure proposed in [7]

and the 2 layer MLC-MSD architecture outperform the 4 layer MLC-MSD

architecture. The gain is about 0.35 dB and 0.15 dB in terms of SNR respec-

tively. On the other hand, the optimized structure (“opt”) proposed in [7]

performs really close to the q-ary LDPC code architecture from subsection

2.1.3.
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Input blocklength set to 20000 bits

In order to exploit the capacity-approaching behaviour of the structures de-

scribed in subsection 2.1.2 and 2.1.3, the input blocklength was raised up to

20000 bits per codeword. Thus, the blocklength of the 16-ary LDPC code

used in the architecture of subsection 2.1.3 was set to 10000 as that of each

subcode of the MLC architectures as well. The other characteristic parameters

have not been changed. The simulation results (Figure 2.5, 2.6 in solid line)

show how the MLC-MSD structure gets closer to the performance of the one

using the 16-ary LDPC code and gains about 0.2 dB on the MLC-PID one.

Nevertheless, the architecture described in subsection 2.1.3 still shows the best

error-rate performance.
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Figure 2.5: Bit-error rate performance of the architectures discussed in subsections 2.1.1,

2.1.2 and 2.1.3 on the AWGN channel: turbo-like receiver (TLR), multilevel coding with mul-

tistage decoding (MLC-MSD) and parallel independent decoding (MLC-PID), q-ary LDPC

code combined with qary modulation. N represents the codeword blocklength in bits.
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Figure 2.6: Frame-error rate performance of the architectures discussed in subsections 2.1.1,

2.1.2 and 2.1.3 on the AWGN channel: turbo-like receiver (TLR), multilevel coding with

multi-stage decoding (MLC-MSD) and parallel independent decoding (MLC-PID), q-ary

LDPC code combined with qary modulation. N represents the codeword blocklength in

bits.

2.1.5 Conclusions

Three higher-order coded modulations employing LDPC codes were intro-

duced and analyzed in order to study their corresponding trade-offs between

bandwidth-effciency and bit-error-rate performance.

Simulation results for 16-QAM modulation schemes showed that the best

performance can be achieved by using a code whose alphabet size matches the

modulation order. Consequently, using such an architecture, associating each

non-binary coded symbol to a modulated symbol appears to be have the best

performance in an environment (such the wireless one) where high bandwidth-

efficiency and good error-correction capability is desirable. However, this per-

formance does not come at a cost of increased decoding complexity.

Future directions for research could focus on the behavior of the proposed

architectures over different channels and with different modulation schemes,

as well as different LDPC codes, having different codeword length or degree-
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distribution profile as in [35]. Further, since a complete analysis of decoding

architectures in terms of latency and complexity is lacking in the literature,

future works could potentially highlight such features.

Moreover, in order to complete the analysis on the spectrally efficient coded

modulations, an optimization of the construction of q-ary LDPC codes has to

be taken into account, starting from the results provided in [26] and [28].

Specifically, the next section introduces a brand new construction method

that provides an important improvement of the error-rate performance in the

waterfall region.

2.2 Protograph q-ary LDPC codes

This section presents a protograph-based design approach for LDPC codes

using modulation larger than QPSK. Several papers [3], [4], [20], [27], [33] -

[35] have investigated the optimization of q-ary LDPC codes. Among these

papers, the primary goals have been the following:

• improving the waterfall region;

• lowering the error floor;

• controlling the trade off between decoding complexity and error-rate per-

formance.

For Galois fields with more than two elements, there has been limited work

on optimizing the left and right LDPC degree distributions in the context of

a code ensemble analysis, such as density evolution [31] has done for GF (2).

Most notable in this regard is the recent work of Urbanke [27] that provides

degree distributions for field sizes up to 8.

The common design approach has begun with the design of a binary mother

PC matrix using a binary degree distribution obtained through density evolu-

tion and a specific PC matrix satisfying that distribution obtained using well
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known algorithms such as [18] or [19]. This design approach then replaces each

binary one in that matrix with a non-zero GF (q) element and each binary zero

with a GF (q) zero.

A key issue is the choice of the distribution of the non-zero GF (q) elements

within a row. The GF (q) elements chosen to replace each non-zero entry in

the binary mother matrix typically have to fulfill the row minimum distance

condition [33], [34]. Specifically, in [33] MacKay found several valid sequences

for 16-ary and 64-ary LDPC codes using a Monte Carlo approach, choosing

GF (q) values in order to maximize the marginal entropy of the syndrome re-

lated to the output sequences. In [34] the authors proposed a method based on

the binary images of each element living in the Galois Field GF (q), consider-

ing therefore the binary row minimum distance to be optimized and providing

results for 64-ary and 256-ary LDPC codes.

In this section, a new design technique for q-ary LDPC codes that maxi-

mizes the row minimum distance by using proper sequences of q-ary elements

in a protograph-based binary PC mother matrix [26], [29] is provided. This

method aims to improve the waterfall region for q-ary LDPC codes. It does

not address the decoding complexity of q-ary LDPC codes. The next sub-

section introduces the protograph-based construction scheme. Following that,

the procedure to properly choose the non-zero entries in the PC matrix is

described.

2.2.1 Protograph LDPC codes

Several papers have investigated the design of LDPC codes with imposed sub-

structures, from multi-edge-type codes [32] to quasi-cyclic (QC) codes [30].

Protograph-based codes are structured codes as well [29], [26].

A protograph is a Tanner graph with a relatively small number of nodes

[29]. Given a set of variable nodes V = {vi}i=1,...,|V | and a set of check nodes

C = {cj}j=1,...,|C|, each edge of the protograph has to connect a variable node
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vi to a check node cj ; parallel edges are permitted [29].

In order to obtain larger derived graphs of various sizes, a “copy and per-

mute” operation can be applied to the protograph. This operation consists of

first making G copies of the protograph and then permuting the endpoints of

each edge among the G variable nodes and the G check nodes connected to

the set of G edges copied from the same edge in the protograph. The derived

graph is the graph of a code G times as large as the code corresponding to

the protograph, with the same rate RP = 1− |C|
|V |

and the same distribution of

variable and check node degrees as the protograph. In fact, the derived graph

contains G ·NP transmitted nodes, and G ·MP check nodes.

The local neighborhood of a node in the derived graph is completely de-

termined by the protograph [29]. The local neighborhood to depth d consists

of all nodes and edges connected to a given node by a path of length d or less.

This neighborhood is a tree if there is at most one path of length d or less to

any other node. If the neighborhood of a variable node in the derived graph is

a tree, the connections among the nodes are still determined by the protograph

structure. As a result, density evolution analysis [31] can be applied on the

protograph to determine whether or not decoding will yield arbitrarily small

bit-error probability on a large derived graph.

In [26], the authors discuss protograph codes that benefit from both capacity-

approaching thresholds and linear minimum distance growth. They provide

methods to compute iterative decoding thresholds and asymptotic ensemble

weight enumerators for protograph-based LDPC codes as well.

The analysis they provide aims to compute the ensemble weight enumerator

for an LDPC code ensemble built from a protograph. The normalized weight

distribution is used to obtain an upper bound on the threshold of Eb/N0 when

the code ensemble is used on an AWGN channel with maximum-likelihood

(ML) decoding and to determine whether or not the minimum distance of

typical codes in the ensemble increases linearly with the code length. Thus,

the asymptotic ensemble weight enumerator is used to determine whether the
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code ensemble achieves linear minimum distance growth, i.e. whether the

minimum distance of most codes in the ensemble increases linearly with the

blocklength.

Also in [26], the authors provide design methods that guarantee code en-

sembles constructed from certain protographs have linear minimum distance

growth. This property holds for protographs having all variable node degrees

equal to 3 or higher. However, it is known from the analysis in [22] and the re-

sults provided in [20] that good iterative decoding thresholds for LDPC codes

can require a substantial fraction of degree-2 variable nodes. To resolve this

conflict, methods in [26] allow the addition of degree-2 and degree-1 nodes to

improve the iterative decoding threshold while preserving the linear minimum

distance growth property. Specifically, the “check node splitting technique”

in [26] accomplishes this.

In this section, the analysis provided in [26] is used to construct protograph

LDPC codes that have the linear minimum distance growth property. A binary

mother matrix from a protograph having the linear minimum distance growth

property by using the “copy and permute” operation is derived.

Let P be a protograph containing only transmitted variable nodes hav-

ing degree equal to 2 or higher and let SP be the subgraph of P containing

only its degree-2 variable nodes and their attached edges and checks. In case

the subgraph is not connected, decompose it into its disjoint connected pieces

SP (j). Thus, SP =
⋃

j SP (j). Each connected subgraph SP (j) has nj degree-2

variable nodes. The protograph P satisfies the check node splitting condition

(that is, has the minimum distance that grows linearly with the blocklength)

if each subgraph SP (j) involves at least nj+1 check nodes. Verifying this con-

dition provides binary mother matrices suitable to be optimized with a proper

choice of the q-ary elements, that will be introduced in the next subsection.
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2.2.2 Selecting the q-ary elements in the PC matrix

In this subsection a method to optimize the error-rate performance of a q-ary

LDPC code having a binary mother PC matrix constructed as in subsection

2.2.1 is considered. The optimization of q-ary LDPC codes has been studied

since their introduction in the late 90’s [3], [4]. MacKay [33] and Poulliat et

al. [34] have addressed the problem of the proper selection of specific GF (q)

elements to replace the ones in a given binary mother PC matrix.

In [33], the author considered the PC matrix as constructed using the

algorithm presented in [18]. He examined the marginal entropy of a single

element of the syndrome vector for each choice of the κ non-zero entries in

a row of the PC matrix. He chose this metric because if the entropy of the

syndrome increases, then an optimal decoder can get closer to the Shannon

limit.

For a specified number κ of ones in a row of the binary mother PC matrix,

the entropy-maximizing algorithm of [33] provides a set of κ distinct field

elements that can be used in any order to replace the κ ones in that row.

In [33] results are shown for LDPC codes over GF (16) and GF (64) having 4

and 5 non-zero elements per row.

In [34], the authors propose a method for selecting the specific GF (q)

elements to replace the ones in a binary mother PC matrix constructed by

using either PEG [18] or the ACE algorithm [19]. This optimization scheme is

based on the binary image representation of the code and it aims to improve

the waterfall region. It intends to lower the computational cost of the method

proposed in [33] for high order fields.

The idea behind that scheme is as follows: the higher the minimum distance

computed on the binary image, the more distinguishable (that is, reliable) the

messages involved in the MP algorithm. Therefore, the algorithm seeks to

maximize the minimum distance of the associated binary code, selecting the

κ-tuples with the maximum minimum distance and, among them, those with

the smallest weight enumerator coefficient [34], [35].
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By comparing the results of both the aforesaid methods, the authors in

[34] observed that the sets they obtained may include the sets given in [33].

Specifically, they found that the method proposed in [33] could provide the

set of κ-tuples with the smallest weight enumerator coefficient for GF (16) and

for GF (64) too, if κ is set to 5. On the other hand, the method of Poulliat et

al. could optimize rows, while MacKay’s is too computationally intensive for

larger field sizes.

Thus, it is proper to select the non-zero entries as follows for a given binary

mother PC matrix derived from a protograph as in subsection 2.2.1. Let Hb be

the binary mother PC matrix derived from a protograph by using the “copy

and permute” operation. Hb has N columns and M rows: each element of Hb

lives in GF (2). Let Ω(κ|q) be the set of length-κ sequences Ωj(κ|q) (where

j = 1, . . . , |Ω(κ|q)|) having maximum minimum distance computed on the

binary image of the related q-ary LDPC code.

To obtain the optimized PC matrix of the q-ary LDPC code, each row of

Hb is considered. Then, the sequence of dci non-zero entries of Hb is replaced

with a dci-tuple picked from the set Ω(dci|q) provided in [33] and [34], where

dci represents the degree of the i-th check node, i = 1, . . . ,M .

In case the weight of a given row did not match the length of the provided

sequences, the following procedure is used. As previously mentioned in this

subsection, the i-th row of the PC matrix of the q-ary LDPC code can be a

permutation or multiplication by a constant of dci-tuples of the set Ω(dci|q).

Therefore, each element Ωj(dci|q) ∈ Ω(dci |q) can be written as an ordered

sequence as Ωj(dci|q) = αv
r = [αr, αs, . . . , αu, αv] where α is the primitive

element of the Galois field GF (q), |r − v| = dci, r < s < . . . < u < v and

{r < s < . . . < u < v} ∈ {0, . . . , q − 2}.

Then, it is possible to derive a (dci + 1)-tuple from Ω(dci|q) by adding

an element [34] as Ωl(dci + 1|q) = [Ωj(dci|q), α
a] = [αv

r , α
a] where v < a,

a ∈ {0, . . . , q − 2}, j = 1, . . . , |Ω(dci|q)|, l = 1, . . . , |Ω(dci + 1|q)| . The matrix

obtained after this operation is called Hr.
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To completely define the PC matrix of the q-ary LDPC code, a law that

multiplies every non-zero element in each row of Hr by a constant is applied.

The law L(γi) that multiplies each element in the i-th row for a factor αγi is

applied, as follows: L(γi) : α
uj 7−→ αuj · αγi where {uj, γi} ∈ {0, . . . , q − 2},

j = 1, . . . , dci and α represents the primitive element of GF (q).

In order to avoid the occurrence of cycles in the PC matrix, L(γi) has

to satisfy the full rank condition (FRC) [34]. Therefore, the value of γi for

each L(γi) has to be chosen such that, given two rows k and l having the

same degree dck = dcl, γk 6= γl. Finally, once L(γi) has been applied to all

the rows, the PC matrix H for the considered q-ary LDPC code is achieved:

H = {hij}i=1,...,M ;j=1,...,N , hij ∈ GF (q). .

2.2.3 Simulation results

This section presents simulation results obtained by implementing 16-ary mod-

ulation using 16-ary LDPC codes. Thus, the system model has been ex-

posed in subsection 2.1.3. In each implementation, a symmetric ultracom-

posite [6] Gray-labeled 16-QAM modulation with a bandwidth efficiency of 2

bits/symbol (i.e. a coding rate R equal to 0.5) is used. For each 16-ary LDPC

code that is considered, the blocklength N was set to 2500 symbols (10000

bits). In this section quasi-regular LDPC codes [20], [23] are considered.

The codes that are taken into account are designed and simulated using four

approaches for a variety of average column weights. First, two binary mother

PC matrices are constructed: one by using the PEG algorithm [18] and one

by using the protograph-based algorithm introduced in subsection 2.2.1. For

the protograph-based PC matrix, the number of transmitted variable nodes

NP of the protograph has been set to 10, while the number of check nodes MP

of the protograph has been set to 5. The protograph is copied and permuted

250 times to produce the 2500-symbol LDPC code. For both the PEG and the

protograph-based PC matrices the specific GF (q) elements to replace the ones

in the binary mother PC matrix are chosen both randomly and by using the
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Figure 2.7: SNR at which each considered q-ary LDPC code has BER=10−5 for different

values of the average column weight t. The codes taken into account are PEG-based and

protograph-based, with random or careful selection of the non-zero entries in the PC matrix.

selection method introduced in subsection 2.2.2. The primitive polynomial of

the considered 16-ary Galois Field is p(x) = 1 + x+ x4.

Figure 2.7 plots the SNR required to achieve a BER=10−5 for codes with

a variety of average column weights t. Performance of the codes whose bi-

nary mother PC matrix was constructed using the PEG algorithm are plot-

ted as blue solid lines, while performance of those constructed by using the

protograph-based algorithm introduced in subsection 2.2.1 are plotted as red

dashed lines. Performance of codes produced by the random selection of GF (q)

elements are identified by a square marker, and performance of codes produced

by careful selection of the non-zero entries according to 2.2.2 are identified by

a circle marker.

This figure shows how the linear minimum distance growth property, which

holds for t > 2.6, influences the performance of the protograph-based codes.

As t decreases from 2.6 to 2 the benefit provided by the protograph-based

approach over the PEG approach for the same (either random or selected)

GF (q) element selection algorithm decreases from about 0.3 dB to less than
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0.05 dB. For values of t above 2.6 the benefit provided by the protograph-

based design is relatively constant. Also, Figure 2.7 clearly shows that the

performance is best for t = 2.6, when it is just large enough to provide the

linear minimum distance growth [26].

Let us look more closely at the t = 2.6 design, which has the variable-

node degree distribution [22] λ2 = 0.4 and λ3 = 0.6. In that case, the binary

adjacency matrix HP of the protograph is as follows:

HP =




1 0 1 1 1 0 0 1 1 0

1 0 1 0 1 0 0 1 0 1

1 0 0 1 0 1 1 0 0 1

0 1 1 0 0 1 0 1 1 0

0 1 0 1 0 1 1 0 1 0




(2.16)

Figures 2.8 and 2.9 show the bit-error-rate and frame-error-rate (FER)

performance respectively from our simulation results for t = 2.6 codes. The

proposed q-ary LDPC code constructed by the combination of the protograph-

based mother code construction of subsection 2.2.1 and the GF (q) selection

algorithm of section 2.2.2 outperforms the other codes. By itself, the selection

of the non-zero entries according to 2.2.2 provides about 0.1 dB of gain in

terms of SNR w.r.t. the random selection for both the PEG-based and the

protograph-based LDPC codes. By itself, the protograph-based mother code

construction of subsection 2.2.1 outperforms the PEG-based non-protograph

construction algorithm by about 0.3 dB for either GF (q) selection algorithm.

Overall, the benefit of a protograph-based design and the GF (q) selection

algorithm of section 2.2.2 provides a 0.4 dB benefit.

In order to compare the proposed construction method to the existing state

of the art of the bandwidth-efficient coded modulation schemes, in Figure

2.8 the performance of the optimized LDPC coded structure on a 4-PAM

modulation exposed in [7] have been plotted as a black dash-dot line. The

architecture proposed in [7] is based on a multilevel coding approach and it
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uses a multistage decoding system. Further, it has a coding rate equal to 1/2

and an input blocklength fixed to 5000 bits. The protograph-based LDPC

codes proposed in this section outperform that proposed in [7] by about 0.4

dB. Moreover, the 16-ary PEG-based LDPC code with selected field elements

outperforms by about 0.15 dB the structure proposed in [7].
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Figure 2.8: Bit-error rate performance of the considered q-ary LDPC codes on the AWGN

channel: PEG-based and protograph-based, with random or careful selection of the non-

zero entries in the PC matrix. The channel capacity is 4.77 dB. Average and best BER

performance of the optimized (“opt”) LDPC coded structure proposed in [7] are provided

as well.

2.2.4 Conclusions

This section introduced a protograph-based method for designing q-ary LDPC

codes for use with modulations larger than QPSK. Simulations focused on a

GF (16), 16-QAM example. The proposed construction method achieves the

maximum gain when the average column weight is chosen so that the linear

minimum distance growth property is satisfied. In this region, the benefit of

a protograph-based design over a standard PEG approach was 0.3 dB. For

selection of the specific Galois field elements, a careful selection algorithm
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Figure 2.9: Frame-error rate performance of the considered q-ary LDPC codes on the AWGN

channel: PEG-based and protograph-based, with random or careful selection of the non-zero

entries in the PC matrix. The channel capacity is 4.77 dB.

provides about 0.1 dB of improvement over a random selection algorithm.

2.3 q-ary LDPC codes with low error floor

Among linear codes, LDPC codes [1] definitely play a fundamental role in

approaching the channel capacity. Specifically, proper degree distribution de-

sign [22,23,31] allows the LDPC codes to approach the Shannon limit. More-

over, it has been shown [3,4] that the error-rate performance may be increased

in terms of coding rate, blocklength and intersymbol interference (ISI) re-

silience (see for instance [38] and references therein) by designing LDPC codes

over GF (q > 2). These codes are called q-ary (or non-binary) LDPC codes.

However, decoding complexity is one of the major issues of the optimization

of q-ary LDPC codes. Several papers have addressed the problem, by using

modified versions of the message passing algorithm proposed in [3] (see for

instance [37]) or by a proper code design. Specifically, it has been shown that

regular [35], quasi-regular [20] and moderate field order (q ≤ 16) protograph-
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based [39] q-ary LDPC codes may have good error-rate performance with an

acceptable decoder computational complexity. Quasi-cyclic [30] q-ary LDPC

codes might further lower the decoding complexity.

Recently LDPC codes have become strongly attractive for emerging storage

technologies such as Flash memories and Phase Change Memories (PCMs) (see

[40] and references therein). In fact, these devices require very good error-rate

performance at very high code rate. The readout channel model is typically

memoryless and it can be binary-input (e.g, for standard PCMs [40, 41]) or

q-ary-input (e.g., for multilevel cell PCMs [42]) either.

Further, it is important to note that solid state memory devices typically

work in very high SNR region. In fact, information is basically stored in

resistivity levels that are separated by orders of magnitude. Therefore, LDPC

codes that aim at being employed in reading architectures for the aforesaid

storage techonologies must have extremely low error floors. Specifically, q-

ary LDPC codes that combine very low error floors and acceptable decoding

complexity may definitely play an important role in solid state device readout

systems, since they typically provide very good performance in the waterfall

region at high coding rate as well.

[44] shows how not all short cycles are equally harmful. Furthermore,

the authors prove how small stopping sets [45] in binary LDPC codes lead

to high error floors under belief propagation decoding [5]. Moreover, a very

effective construction algorithm for irregular binary LDPC codes with low error

floor is provided. Error floors in q-ary LDPC codes have been related to small

minimum distance too [35], [27], [36]. However, designing a degree distribution

for large minimum distance is computationally cumbersome. In fact, density

evolution algorithm for q-ary LDPC codes is prohibitive for alphabet size larger

than eight. Further, careful selections of the non-zero entries [33], [35] in the

q-ary PC matrix provide good results in terms of error floors especially for

very high field order, leading to a large computational complexity.

This section aims to provide efficient construction methods for q-ary LDPC
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codes with low error floors and moderate field order. These algorithms enlarge

the size of q-ary stopping sets and q-ary linearly dependent sets. The aforesaid

topological structures have been related to specific failures in q-ary LDPC

decoding by a deep geometrical and graphical analysis of the q-ary LDPC

decoding problem. Thus, providing large q-ary stopping sets and q-ary linearly

dependent sets can alleviate the error floor of the given q-ary LDPC code.

The section is organized as follows. Section 2.3.1 describes the system

model. Section 2.3.2 reports a geometrical representation of the q-ary decod-

ing problem and some practical examples of the decoding failures that may oc-

cur. Section 2.3.3 provides a graphical analysis of the q-ary decoding problem.

Specifically, definitions, properties and relationships of characteristic topolog-

ical structures such as q-ary cycle sets, q-ary stopping sets and q-ary linearly

dependent sets are provided. In Section 2.3.4 the correspondences between the

decoder failures introduced in Section 2.3.2 and the topological structures pre-

sented in 2.3.3 are motivated. Furthermore, this section also provides the low

error floor q-ary LDPC code construction algorithms. Section 2.3.5 presents

the simulation results. This section also discusses the practical aspects of the

code construction and decoding. Section 2.3.6 delivers the conclusions.

2.3.1 System model

This section uses LDPC codes over GF (q = 2p), with p an integer. For a

chosen code rate R, and blocklength N , the LDPC code requires a PC matrix,

H = {Hij}i=1,...,M ;j=1,...,N , where Hij ∈ GF (q) and R = 1−
M

N
.

In this manner, the K = NR information symbols and the M parity sym-

bols are encoded into a q-ary vector x = {xj}j=1,...,N , xj ∈ GF (q). x is

associated with the sequence of addresses given by xb = {xjb}j=1,...,N , where

xjb = {x
j
bk
}k=1,...,p is the binary vector representation of the non-binary code-

word symbol xj .

In case a binary-input channel is considered, xb is mapped into a sequence
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sb = {s
j
b}j=1,...,N , where s

j
b = {s

j
bk
}k=1,...,p is associated with x

j
b. On the other

hand, in case a q-ary-input channel is considered, the N elements of x are

mapped into the modulated sequence s = {sj}j=1,...,N according to the sequence

of addresses xb.

Figure 2.10: Block diagram of the system model.

At the receiver, the channel outputs are properly demapped and the prob-

abilities that are used to initialize the message passing algorithm in the de-

coder [3] are computed.

Specifically, in case a binary-input channel is considered, the channel output

is yb = {yjb}j=1,...,N , where y
j
b = {yjbk}k=1,...,p. Each y

j
b is associated with the

binary representation xjb of the j-th transmitted symbol. Moreover, since the

channels that have been taken into account are memoryless, the likelihood

of the j-th symbol being equal to a is fa
j =

∏p
k=1 P (x

j
bk
= ak|y

j
bk
) for each

j = 1, . . . , N , a ∈ GF (q) where ak is the k-th bit of the binary representation

of a.

On the other hand, in case a q-ary-input channel is considered the channel

output is y = {yj}j=1,...,N . Each yj is associated with the j-th transmitted

symbol xj . Further, each fa
j can be properly computed directly from the

respective channel output.
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Finally, it is worth to introduce some definitions that will be used through-

out the whole section. Let χ(H) = {χ(Hij)}i=1,...,M ;j=1,...,N , χ(Hij) ∈ GF (2)

be the binary mother matrix associated with the q-ary parity-check matrix

H . In other terms, χ(Hij) = 1 ↔ Hij > 0, while χ(Hij) = 0 ↔ Hij = 0.

Therefore, χ(H) identifies the positions of the non-zero entries in H .

Further, let ψ(H) = {ψ(Hij)}i=1,...,M ;j=1,...,N be the binary image associated

with the q-ary parity-check matrix H [35]. Each ψ(Hij) is represented by a p

x p matrix over GF (2), i.e., ψ(Hij) ∈ GF (2)pxp. Therefore, ψ(H) is a pM x

pN matrix.

Specifically, let p(x) = α0 + α1x + . . . + xp, αi ∈ GF (2) ∀i = 0, . . . , p − 1

be the primitive polynomial of the Galois Field GF (q = 2p). Let α be the

primitive element of GF (q). Finally, let A be the primitive element of GF (q)

under a matrix representation. Thus, A is as follows:

A =




0 1 0 · · · 0

0 0 1
. . . 0

0 0 0
. . . 1

α0 α1 α2 · · · αp−1




(2.17)

Therefore, the powers of A are the non-zero elements of GF (q) as the

powers of α as well. That is, ακ ⇔ Aκ, where κ ∈ {0, . . . , q − 2}. Thus,

ψ(Hij = αt) = At ↔ Hij > 0, while ψ(Hij) = 0 ↔ Hij = 0. 0 is the p x p

all-zero matrix. It is proper to remind that additions and multiplications in

GF (q) correspond to additions and multiplications modulo 2 of the aforesaid

matrices.

2.3.2 Geometrical representation

From a geometrical point of view, a length-N codeword of a LDPC code repre-

sents a point in a N -dimensional discrete space. Therefore, the value assigned

to the i-th variable node represents the i-th coordinate in the aforesaid space.
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For a q-ary LDPC code each coordinate can assume q values, from 0 to q − 1.

Each row in theM x N parity-check matrix represents a parity-check equa-

tion, that is, a constraint that a codeword has to satisfy. In the N -dimensional

space, each constraint represents in general a hypersolid. Every vertex of the

i-th hypersolid is a combination of the feasible values of the variable nodes in-

volved in the i-th parity-check equation. Therefore, every codeword is a vertex

that is common to each hypersolid.

The decoder’s input probabilities (hence, the channel output) define a feasi-

bility region that binds the decoder behavior. In general, the feasibility region

is the set of vertices that form a hypersolid in the N -dimensional space. Thus,

the decoder aims to find the correct point in the N -dimensional space within

the aforesaid feasibility hypersolid.

The erasures that occur on the data transmission strongly infer on the

geometry of the feasibility region. Specifically, in case a q-ary LDPC code is

employed, it is possible to make a distinction between full erasures and partial

erasures. A symbol is fully erased if each element of its binary representation is

erased. On the other hand, a symbol is φ-partially erased if only φ components

of its binary representation are erased.

In case the i-th symbol is fully erased, the feasibility hypersolid spans all

over the i-th dimension-axis. On the other hand, if the i-th symbol is φ-

partially erased, the feasibility hypersolid spans over just 2p−φ possible values

on the i-th dimension-axis, where p = log2 q.

In case of erasure channels, there are two possible reasons for a decoding

failure to occur. Let X = {xκ}κ=1,...,|X| be the set of the codewords of the

given q-ary LDPC code. Let F = {fκ}κ=1,...,|F | be the set of the vertices of

the feasibility region. Let Ck = {ckκ}κ=1,...,|Ck| be the set of the points in

the N -dimensional space that belong to the hypersolid related to the k-th

constraint, that is, satisfy the k-th parity check equation of the PC matrix.

Thus,
⋂M

k=1Ck = X . Furthermore, let πi(z) be the set of the projection on the

i-th dimension-axis of each element living in z.
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Decoder failure - type I

Let Γ(F, k) be the set of the cardinalities of the projections of the inter-

section between the feasibility region F and the hypersolid related to the

k-th constraint Ck on each dimension of the N -dimensional space: that is,

Γ(F, k) = {Γi(F, k) = |πi(F ∩ Ck)| |i ∈ {1, . . . , N}}. Thus, let Γ+(F, k) be

the set of the elements of Γ(F, k) that are equal to the alphabet size of the

q-ary LDPC code, i.e., Γ+(F, k) = {Γi(F, k) : Γi(F, k) = q}. Further, let

I+(F ) be the set of the dimensions related to the elements of Γ+(F, k) for each

k = 1, . . . ,M , i.e., I+(F ) = {i : Γi(F, k) = q, ∀k = 1, . . . ,M}. Finally, let

E+(F ) be the set of the constraints that insist over each element in I+(F ),

i.e., E+(F ) = {k : Γi(F, k) ∈ Γ
+(F, k)|i ∈ I+(F )}.

In other terms, Γ(F, k) takes into account the width of the feasibility region

on each dimension when the k-th constraint of the q-ary LDPC code is con-

sidered. Analogously, Γ+(F, k) counts the symbols that are fully erased and

that insist on the k-th constraint of the q-ary LDPC code at the same time.

Finally, I+(F ) contains the coordinates of the aforesaid symbols and E+(F ) is

the set of the constraints that infer on the value of the coordinates in I+(F ).

Therefore, if |Γ+(F, k)| ≥ 2 ∀k ∈ E+(F ), the decoder fails. In fact, if it

is not possible to recover any information about the coordinates of at least

two dimensions from any constraint infering on them, there is no way for the

decoder to converge to any codeword.

Decoder failure - type II

Decoder failures of the first type occur when the decoder can not converge to

any possible codeword of the given q-ary LDPC code. However, a decoding

failure may occur also when the decoder can not choose among the possible

codewords which is the correct one. In other terms, if |X ∩F | ≥ 2 the decoder

fails as well. In fact, there are at least two possible codewords belonging to

the feasibility region. Thus, since the messages from check node to variable
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node and viceversa are set to the same value for two or more elements of X ,

the decoder keeps oscillating between at least two of the possible solutions of

the system.

Examples

Decoder failures of type I and type II are related to specific characteristics of

the q-ary parity-check matrix H , of the binary mother matrix χ(H) and of the

binary image ψ(H) of the q-ary PC matrix. In order to point out what those

types of decoding failures and, in general, the geometrical representation are

meant to, this subsection reports examples of decoder behaviours for several

transmissions of a simple 4-ary LDPC code.
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Figure 2.11: Example of decoder failure of the first type. Yellow upward-pointing triangles

and green downward-pointing triangles represent the 3-tuples that satisfy the first and the

second constraint in the code associated with the PC matrix in (2.18) respectively. Blue

circles represent the points of the feasibility region associated with the channel output Y =

[Θ,Θ, 3] = [(θ, θ), (θ, θ), (1, 1)].

Let us consider a rate-1/3 q-ary code where q = 4: the number of variable

nodes is N = 3, while the number of check nodes is M = 2. The related q-ary

PC matrix H is as follows:
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H =

[
2 1 0

3 3 3

]
(2.18)

Thus, the related binary mother matrix χ(H) is as follows:

χ(H) =

[
1 1 0

1 1 1

]
(2.19)

On the other hand, the binary image ψ(H) of (2.18) is as follows:

ψ(H) =




0 1 1 0 0 0

1 1 0 1 0 0

1 1 1 1 1 1

1 0 1 0 1 0




(2.20)

Each codeword is a 3-tuple [x1, x2, x3]. Each symbol xi, i = 1, . . . , N is

represented by p = log2 q = 2 bits, i.e., xi = (xi1 , xi2), xi1 being the least

significant bit. Specifically, the set of the codewords of the 4-ary LDPC code

related to (2.18) X = {A,B,C,D} is exposed in Table 2.1.

Table 2.1: Codewords of the 4-ary LDPC code associated with the PC matrix in (2.18)

Codeword q-ary representation binary representation

A [0,0,0] [(0,0), (0,0), (0,0)]

B [3,1,2] [(1,1), (1,0), (0,1)]

C [1,2,3] [(1,0), (0,1), (1,1)]

D [2,3,1] [(0,1), (1,1), (1,0)]

Let us consider a binary erasure channel. Let Y = [yi]i=1,...,N be the q-ary

representation of a given channel output and let (yij)j=1,...,p be the binary rep-

resentation of yi. Further, each yi lives in {0, . . . , q−1,Θ, {ΘφJ
}J∈{1,...,p},|J |=φ}.

Θ represents a symbol that has been fully erased, while ΘφJ
represents a symbol
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that has been φ-erased on the bits defined by J . Let θ represent a bit erasure

in the binary representation of a given symbol. Therefore, each element of

the binary representation of Θ is θ. Furthermore, in case the i-th symbol is

φ-erased, i.e., yi = ΘφJ
, the j-th element of the binary representation of yi is

θ if j ∈ J , while yij = xij if j /∈ J .
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Figure 2.12: Example of decoder failure of the second type. Yellow upward-pointing triangles

and green downward-pointing triangles represent the 3-tuples that satisfy the first and the

second constraint in the code associated with the PC matrix in (2.18) respectively. Blue

circles represent the points of the feasibility region associated with the channel output Y =

[Θ11
,Θ12

,Θ] = [(θ, 0), (0, θ), (θ, θ)].

Therefore, given the 4-ary LDPC code associated with the PC matrix of

(2.18), yi ∈ {0, . . . , 3,Θ,Θ11,Θ12}, i = 1, . . . , 3. Further, for the given i-th

symbol, the binary representations of Θ, Θ11 and Θ12 are (θ, θ), (θ, xi2) and

(xi1 , θ) respectively.

Figures 2.11, 2.12 and 2.13 show the feasibility region of the code associ-

ated with (2.18) for three different channel outputs. Each point of a given

feasibility region is plotted as a blue circle. The aforesaid figures also provide

a graphical representation of the 3-tuples that satisfy the first constraint (yel-

low upward-pointing triangles) and the second constraint (green downward-

pointing triangles) as well. Each 3-tuple that satisfies both the constraints is
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a codeword.
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Figure 2.13: Example of decoder success. Yellow upward-pointing triangles and green

downward-pointing triangles represent the 3-tuples that satisfy the first and the second

constraint in the code associated with the PC matrix in (2.18) respectively. Blue cir-

cles represent the points of the feasibility region associated with the channel output

Y = [3,Θ,Θ] = [(1, 1), (θ, θ), (θ, θ)].

Example 1: The channel output associated with the feasibility region in

Figure 2.11 is Y = [Θ,Θ, 3] = [(θ, θ), (θ, θ), (1, 1)]. Therefore, the feasibility

region is a plan that cuts the 3-dimensional space for a value of the third co-

ordinate set to 3. Although there is only a codeword (C) within the feasibility

region, the decoder can not converge to it since it can not recover any informa-

tion about x1 and x2 from any constraint of the code. In fact, the feasibility

region spans through all the first dimension-axis and the second dimension-axis

as well. Following the notation of subsection 2.3.2, Γ1(F, k) = Γ2(F, k) = q,

Γ3(F, k) = 1 ∀k = 1, 2. Thus, since Γ+(F, k) = 2 ∀k = 1, 2, Figure 2.11 is an

example of a decoder failure of the first type.

Example 2: The feasibility region in Figure 2.12 is related to the channel

output Y = [Θ11 ,Θ12 ,Θ], where the codeword that is supposed to be transmit-

ted is C = [1, 2, 3] = [(1, 0), (0, 1), (1, 1)]. Therefore, the binary representation

of the channel output is [(θ, 0), (0, θ), (θ, θ)]. Such a configuration brings to
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a decoder failure of the second type. In fact, two codewords (A and C) fall

within the feasibility region, i.e., X ∩ F = {A,C}. Thus, the decoder can

not choose whether A or C has been transmitted and a decoding failure of

subsection 2.3.2 occurs.

Example 3: Finally, let us assume that the codeword B = [3, 1, 2] =

[(1, 1), (1, 0), (0, 1)] has been transmitted. Moreover, let us assume that x2 and

x3 got fully erased. Therefore, the associated channel output Y is [3,Θ,Θ] =

[(1, 1), (θ, θ), (θ, θ)]. Figure 2.13 shows the feasibility region associated with

the aforesaid channel output. This configuration can not bring to a decoder

failure of the second type, since X ∩ F = {B}, so |X ∩ F | = 1. Moreover, a

decoder failure of the first type can not occur as well. The projections of the

intersections of the feasibility region F and the hypersolid associated with the

k-th constraint of the PC matrix in (2.18) are exposed in Table 2.2. Thus, fol-

lowing the notation of subsection 2.3.2, Γ+(F, 1) = {3} and Γ+(F, 2) = {2, 3},

hence, |Γ+(F, k)| = 2 if and only if k = 2. Specifically, given the knowledge of

x1 = 3, the first constraint provides the correct information about x2 = 1. On

the next iteration, the second constraint of (2.18) provides information about

x3 = 2. Therefore, Figure 2.13 is an example of a decoder success for the 4-ary

code related to the PC matrix in (2.18).

Table 2.2: Projections of F ∩ Ck over the 3 dimensions of the 4-ary LDPC code associated

with the PC matrix in (2.18), when the channel output is Y = [3,Θ,Θ]

πi(F ∩ Ck) i = 1 i = 2 i = 3

k = 1 {3} {1} {0, . . . , 3}

k = 2 {3} {0, . . . , 3} {0, . . . , 3}

2.3.3 Graph analysis

As previuosly introduced, decoder failures of type I and type II are related to

specific characteristics of the q-ary parity-check matrixH , of the binary mother
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matrix χ(H) and of the binary image ψ(H) of the q-ary PC matrix. In fact, it

is possible to define some characteristic structures over the graphs associated

with the aforesaid matrices that can be related to error events in the low

error probability region. Further, construction algorithms can be implemented

taking into account those relationships in order to optimize the q-ary LDPC

code design.

Specifically, it is worthwhile to find a correspondence between a decoder

failure and a given graphical topology, in order to implement algorithms that

help in improving the performance of q-ary LDPC codes in the low error-rate

region.

This analysis has been already accomplished for binary LDPC codes [44],

[45]. However, there is no paper in literature dealing with this task for LDPC

codes over GF (q). In order to highlight the differences and the correspondences

with their binary counterparts, some of the notations introduced in [44] have

been extended to the q-ary case.

Definition 1: A set of d q-ary variable nodes and d q-ary constraint nodes

forms a q-ary cycle if they are connected by edges induced by a binary mother

matrix such that a path exists that travels through every node in the set and

connects each node to itself without traversing a node twice.

Definition 2: A set of q-ary variable nodes is a q-ary cycle set ξd if it has

d elements and if one or more q-ary cycles are formed between this set and its

neighboring constraint set in a bipartite graph induced by the binary mother

matrix χ(H).

Definition 3: A set of q-ary variable nodes is a q-ary stopping set Sd if it

has d elements and all its neighboring constraint nodes are connected to it at

least twice in the bipartite graph induced by the binary mother matrix χ(H).

Definition 4: A set of q-ary variable nodes is a q-ary linearly dependent

set Λd,l if it has d elements and l columns associated with those nodes in the

binary image ψ(H) of the q-ary PC matrix H form a binary linearly dependent

set [44].
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The relationships among q-ary cycle sets, q-ary stopping sets and q-ary

linearly dependent sets provide useful informations about the graph structure

of a given q-ary LDPC code. The following lemmas and theorems explain the

nature of the relationships that intercur between ξd, Sd and Λd,l.

Lemma 1: In a bipartite graph induced by a binary mother matrix χ(H)

without singly connected variable nodes, every q-ary stopping set contains

q-ary cycles ({ξd} ⊃ {Sd}).

Proof: Since q-ary cycle sets and q-ary stopping sets are basically defined

over the bipartite graph induced by a binary mother matrix, Lemma 1 can be

proved as Lemma 1 in [44]. In fact, traversing the bipartite graph induced by

a binary mother matrix leaving a node on a different edge than that used to

enter that node indefinetely, it is possible to visit a node twice, that is, to form

a q-ary cycle. �

Lemma 2: In a q-ary linearly dependent set Λd,l, l is at least equal to d,

i.e., l ≥ d.

Proof: The binary image of each non-zero entry in the q-ary PC matrix is

a p x p submatrix (p = log2 q) that has no linearly dependent columns. Thus,

a set of d q-ary variable nodes takes at least d columns of its binary image to

form a binary linearly dependent set. �

Theorem 1: A q-ary stopping set is a q-ary linearly dependent set if and

only if the rank of the submatrix formed by the associated columns in the

q-ary PC matrix is not full.

Proof: A set of d q-ary variable nodes forms a q-ary linearly dependent set

Λd,l if the binary sum of l columns of the binary image ψ(H) associated with

those nodes is the all-zero vector. The d q-ary variable nodes forms a q-ary

stopping set if any neighbor (q-ary constraint nodes) is shared by each variable

node in the set at least twice. Therefore, the submatrix formed by the columns

in ψ(H) associated with those q-ary variable nodes must have at least a couple

of linearly dependent columns. Thus, the rank of the aforesaid submatrix is

not full, as the rank of the submatrix formed by the columns associated with
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those q-ary variable nodes in the q-ary PC matrix as well. �

Corollary to Theorem 1: A q-ary linearly dependent set that contains q-ary

cycles has to be a q-ary stopping set ({Λd,l ∩ ξd} = {Λd,l ∩ Sd}).

Proof: The binary sum of l columns of the binary image associated with

the nodes in Λd,l is the all-zero vector. Thus, each neighbor (q-ary constraint

node) has to properly insist on at least two q-ary variable nodes in the set. If

Λd,l contains q-ary cycles, then any neighbor is shared by each variable node

in the set at least twice. �

Theorem 2: A q-ary linearly dependent set does not contain any q-ary cycle

if and only if the number of the q-ary variable nodes is less than the number

of their neighbors.

Proof: Each q-ary variable node in a q-ary linearly dependent set has to

be shared by every neighbor (q-ary constraint node) at least twice. Thus, the

minimal cycle-free structure that fulfills this condition may be represented as

follows:




ζ0 ζ1 0 0 0 . . . 0 0

0 ζ2 ζ3 0 0 . . . 0 0
...

. . .
. . .

...
... . . . 0 ζ2i ζ2i+1 0 . . .

...
...

. . .
. . .

...

0 0 . . . . . . 0 ζ2(m−1) ζ2(m−1)+1 0

0 0 . . . . . . 0 0 ζ2m ζ2m+1




(2.21)

Each ζi is an element of H living in GF (q). Therefore, if m is the number

of constraint nodes that are involved in the minimal cycle-free structure, the

number of q-ary variable nodes has to be at least m+ 1. �

Theorem 3: If d columns of the q-ary PC matrix are linearly dependent

over GF (q), the related q-ary variable nodes belong to a Λd,l set. Specifically,

l = d and the columns associated with those q-ary variable nodes in the binary
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Figure 2.14: Venn diagram of the relationships among q-ary cycle sets ξd, q-ary stopping

sets Sd and q-ary linearly dependent sets Λd,l.

image of the q-ary PC matrix form p binary linearly dependent sets, where

p = log2 q.

Proof: Let D be the set of the indexes of the d columns of the q-ary PC

matrix that are linearly dependent over GF (q). The sum over GF (q) of theM

x N q-ary PC matrix columns associated with the d q-ary variable nodes that

are taken into account is the all-zero vector. That is,
∑

j∈DHij = 0 in GF (q)

∀i = 1, . . . ,M . It is worth to remind that additions of elements in GF (q)

correspond to additions modulo 2 of their binary images. The columns of the

binary image of the q-ary PC matrix columns associated with the d q-ary vari-

able nodes have to be binary linearly dependent as well. Therefore, the afore-

said d q-ary variable nodes form a q-ary linearly dependent set Λd,l. Further,

the sum of the k-th column of the binary images of the d columns of the q-ary

PC matrix associated with the q-ary variable nodes in Λd,l has to be an all-

zero vector. Thus,
⊕

j:Vj∈Λd,l
ψ(Hij)tk = 0 ∀k = 1, . . . , p, ∀(i, t) ∈ {1, . . . ,M}

x {1, . . . , p}. That is, the binary sum is performed over d columns of ψ(H)

∀k = 1, . . . , p. Therefore, l = d and the submatrix {ψ(Hij)}i=1,...,M ;j:Vj∈Λd,d

contains p binary linearly dependent sets. �

Figure 2.14 shows the relationships among q-ary cycle sets, q-ary stopping

sets and q-ary linearly dependent sets.

Given the aforesaid definitions and relationships, it is possible to define

proper correspondences between decoder failures and topological structures
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induced by the code graph. The next section introduces those correspondences

and provides algorithms that aim to counteract the effect of such graphical

structures on the error-rate performance of the q-ary LDPC codes.

2.3.4 Low error floor design

This section introduces two algorithms that aim to mitigate the effects of

the topological structures exposed in the previous section. Specifically, the

combination of those algorithms guarantee the q-ary LDPC code to have as

large q-ary stopping sets and q-ary linearly dependent sets as possible for a

given degree distribution.

The algorithms are based on the correspondences that may be found be-

tween topological structures and decoder failures. Once those have been de-

fined, the design methods can be exploited and properly implemented as well.

The next subsections are dedicated to expose the aforesaid correspondences

first and the proper design algorithms then.

Correspondences

Among the topological structures introduced in Section 2.3.3, q-ary stopping

sets and q-ary linearly dependent sets bring the main contribution to the error-

rate performance.

Specifically, it is possible to relate q-ary stopping sets and q-ary linearly

dependent sets to decoder failures of type I and decoder failures of type II

respectively.

Let us assume it is not possible to get any information about the q-ary

variable nodes in a q-ary stopping set Sd from the channel output. Therefore,

the likelihoods of each symbol in the set of being equal to every a ∈ GF (q)

are set to the same value. Following the notation in subsection 2.3.2, this

corresponds to the case for which the feasibility hypersolid spans over the

dimensions defined by the variable nodes in the q-ary stopping set. Therefore,
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the indexes of the variable nodes involved in the q-ary stopping sets correspond

to the elements of the sets I+(F ). Analogously, the indexes of the constraints

infering over the values of the symbols in the q-ary stopping set are the elements

of E+(F ).

Each element in a q-ary stopping set has to be shared by any constraint

node linked to them at least twice. That is, the cardinalities of the sets Γ+(F, k)

where k ∈ E+(F ) are at least equal to 2. Thus, any constraint connected to

the symbols in Sd can not help in recovering the values of the q-ary variable

nodes. Therefore, it is not possible for the decoder to converge to a codeword,

hence, the decoder fails.

It is worth to note that the correspondence between decoder failure of type

I and q-ary stopping set is strongly related to the concept of full erasure. In

fact, if there is at least a symbol in the q-ary stopping set that has not been

fully erased by the channel, the q-ary decoder can successfully converge to the

transmitted codeword as its maximum number of iterations is large enough.

Further, since the decoding is operated over GF (q) symbols, a binary stopping

set [44] in the binary image ψ(H) of a q-ary PC matrix H does not bring to a

decoder failure.

For instance, let us consider the 4-ary code of subsection 2.3.2. Let V be

the set of the 4-ary variable nodes, so that V = {V1, V2, V3}. Let (vi1 , vi2) be

the binary representation of the i-th 4-ary variable node, Vi. Thus, given the

Definition 3 in the previous Section, {V1, V2} is a 4-ary stopping set for the

code associated with the q-ary PC matrix in (2.18). Further, in case those

q-ary variable nodes are fully erased by the channel, decoder failure occurs.

Example 1 in subsection 2.3.2 shows this situation.

Let us look to the binary image ψ(H) in (2.20). It is possible to note

that the set {v11 , v12 , v21} (that is, the first three columns in ψ(H)) would

represent a binary stopping set [44] if a binary decoder would be used over

ψ(H). However, it is possible to prove that even if those variable nodes in

the binary representation got binary erased, the q-ary decoder can always
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successfully recover the transmitted codeword.

Partial erasures over the q-ary variable nodes in a q-ary stopping set can

cause a decoder failure. This happens when those binary erasures occur over

the binary representation of those variable nodes forming a binary linearly

dependent set in the binary image of the q-ary PC matrix. That is, partial

erasures over the q-ary variable nodes in a q-ary stopping set may bring to a

decoder failure if that set is also a q-ary linearly dependent set.

For instance, let us consider another 4-ary code, whose related q-ary PC

matrix H is as follows:

H =

[
2 2 0

3 3 3

]
(2.22)

Thus, the related binary mother matrix χ(H) is as follows:

χ(H) =

[
1 1 0

1 1 1

]
(2.23)

The binary image ψ(H) of (2.22) is as follows:

ψ(H) =




0 1 0 1 0 0

1 1 1 1 0 0

1 1 1 1 1 1

1 0 1 0 1 0




(2.24)

{V1, V2} is a 4-ary stopping set S2 and a 4-ary linearly dependent set Λ2,2

as well. In case, if only v11 and v22 are binary erased, the decoder recovers

the transmitted codeword. On the other hand, if only v11 and v21 are binary

erased, the decoder fails.

Partial erasures are therefore fundamental when q-ary linearly dependent

sets are taken into account. This is because q-ary linearly dependent sets are

directly related to the concept of minimum distance of the code. In fact, the

distance among the codewords increases as the number of linearly independent
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columns in the binary image of the q-ary PC matrix increases. Moreover, a

code with minimum distance lmin has at least one Λdmin,lmin
set but no Λdmin,l

sets where l < lmin.

q-ary linearly dependent sets influence the shape of the feasibility region

introduced in Section 2.3.2. In fact, Λd,l sets make the feasibility region involve

at least two possible codewords, i.e., following the notation of subsection 2.3.2,

the cardinality of {X ∩ F} is at least 2. Therefore, q-ary linearly dependent

sets are strictly related to decoder failure of type II. Example 2 in subsection

2.3.2 shows a Λ3,4 set that causes a decoder failure of the second type, since

the columns associated with {v11 , v22 , v31 , v32} in (2.20) form a binary linearly

dependent set.

Finally, it is worth to remind that the role of q-ary stopping sets and q-ary

linearly dependent sets can be translated to binary and q-ary non-erasure sce-

narios. In those cases, variables with poor observation reliability are analogous

to erasures. Thus, increasing the minimum q-ary stopping set size and the min-

imum q-ary linearly dependent set size should represent an effective method

for generating q-ary LDPC codes suited for Message-Passing decoding.

Construction algorithms

In order to counteract the effect of decoder failures of first and second type,

proper q-ary LDPC code design algorithms can be implemented. As previously

introduced in this Section, decoder failures of type I and type II are related to

characteristic topological structures. Therefore, limiting the occurrence of such

topological structures, i.e., increasing the size of the minimum q-ary stopping

set and q-ary linearly dependent set, should also limit the occurrence of the

aforesaid decoder failures.

Specifically, q-ary stopping sets are strictly related to the configuration of

the binary mother matrix associated with the q-ary LDPC code. A proper

construction of the binary mother matrix should guarantee the q-ary LDPC

code to be able to limit the effect of q-ary stopping sets on the error-rate
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performance of the code. Thus, ACE algorithm [44] represents a very efficient

method to increase the minimum q-ary stopping set size.

Once the positions of the non-zero entries in the q-ary PC matrix are de-

fined, the value of each Hij ∈ H has to be chosen. In order to limit the decoder

failures of type II, an algorithm that aims at providing large size q-ary linearly

dependent sets can be implemented. q-ary linearly dependent set maximiza-

tion (LDSM) algorithm performs the choice of the non-zero entries in each

column of the q-ary PC matrix such that the number of binary linearly depen-

dent columns in the binary image is maximized. Specifically, LDSM algorithm

is performed sequentially. In fact, the values of the non-zero entries of the

columns that insist on most of the q-ary check nodes of the last column of the

q-ary PC matrix that has been taken into account are chosen.

Let N be the number of the q-ary variable nodes and M be the number

of the q-ary check nodes of the q-ary LDPC code. Let H , χ(H) and ψ(H) be

the q-ary PC matrix, the binary mother matrix and the binary image of H

respectively. Let B = {Bi}i=1,...,|B|, R = {Ri}i=1,...,|R|, T = {Ti}i=1,...,|T | and

U = {Ui}i=1,...,|U | be sets of column indexes, i.e., Bi, Ri, Ti, Ui ∈ {1, . . . , N}.

Further, let c1(z) be the number of ones in the binary sequence z. Finally, let

G(t) be the set of the row indexes of the non-zero entries of the t-th column of

the q-ary PC matrix, i.e., G(t) = {i ∈ {1, . . . ,M} : χ(Hit) = 1}. The LDSM

algorithm is as follows:

initialize:

B = ∅;

R = ∅;

U = ∅;

T = {1};

end initialize
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while B ⊂ {1, . . . , N} do

begin

for k = 1 to |T | do

begin

R = findcol(B, Tk);

for n = 1 to |R| do

begin

B ← B ∪Rn;

{HiRn
}i∈G(Rn) = choose(B, q);

if B = {1, . . . , N}
exit;

end if

end for

U ← U ∪ R;

end for

T ← U ;

end while

function: R = findcol(B, Tk)

Ri ∈ {1, . . . , N} \B s.t. c1({χ(HuTk
)⊕ χ(HuRi

)}u=1,...,M) is minimized.

end function

function: {HiRn
}i∈G(Rn) = choose(B, q)
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{HiRn
}i∈G(Rn) ∈ GF (q)|G(Rn)| s.t. the number of linearly dependent columns

in {ψ(Hij)}i=1,...,M ;j∈B is maximized.

end function

As previously introduced, preventing small q-ary linearly dependent sets

prevents the q-ary LDPC code to have a small minimum distance. Specifically,

LDSM algorithm aims to construct q-ary LDPC codes having q-ary linearly

dependent sets Λd,l where dmin = min{d} and lmin = min{l} are as large

as possible. The values of dmin and lmin are strictly related to the binary

mother matrix χ(H). In fact, the topological structure of the q-ary PC matrix

depends on the edge connections imposed by χ(H) too. Therefore, it is worth

to remind that an effective maximization of the q-ary linearly dependent set

size also requires a proper construction of the binary mother matrix.

2.3.5 Simulation results

This section presents simulation results by implementing transmissions over

binary-input channels and q-ary-input channels using q-ary LDPC codes. Each

code that has been constructed is characterized by (N,R, q) = (2500, 1/2, 16),

where N is the number of symbols for each codeword, R is the code rate and q is

the alphabet size. In this section quasi-regular LDPC codes [20], [23] have been

considered. Further, each code is characterized by an average column weight

t = 2.6 in order to have a fair comparison in terms of error-rate performance.

The maximum number of iterations of the decoding message passing algorithm

[3, 4] has been set to 50.

The primitive polynomial of the considered 16-ary Galois field is p(x) =

1+x+x4. Thus, the primitive element ofGF (16) under a matrix representation

in (2.17) is as follows:
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Figure 2.15: Bit Error Rate performance of the considered q-ary LDPC codes on the BEC

channel. The binary mother matrix is constructed by using protograph-based algorithm

(“proto“) [39], ACE algorithm (“ACE“) [44] and protograph-based ACE algorithm (“pro-

toACE“). The non-zero entries in the q-ary PC matrix are randomly selected (”RS”),

carefully selected (”CS”) or selected by means of the LDSM algorithm (”LDSM“). t is

the average column weight, whereas dACE and η are the setup parameters for the ACE

algorithm.
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Figure 2.16: Frame Error Rate performance of the considered q-ary LDPC codes on the

BEC channel. The binary mother matrix is constructed by using protograph-based algo-

rithm (“proto“) [39], ACE algorithm (“ACE“) [44] and protograph-based ACE algorithm

(“protoACE“). The non-zero entries in the q-ary PC matrix are randomly selected (”RS”),

carefully selected (”CS”) or selected by means of the LDSM algorithm (”LDSM“). t is

the average column weight, whereas dACE and η are the setup parameters for the ACE

algorithm.
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Figure 2.17: Bit Error Rate performance of the considered q-ary LDPC codes on the BSC

channel. The binary mother matrix is constructed by using protograph-based algorithm

(“proto“) [39], ACE algorithm (“ACE“) [44] and protograph-based ACE algorithm (“pro-

toACE“). The non-zero entries in the q-ary PC matrix are randomly selected (”RS”),

carefully selected (”CS”) or selected by means of the LDSM algorithm (”LDSM“). t is

the average column weight, whereas dACE and η are the setup parameters for the ACE

algorithm.
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Figure 2.18: Frame Error Rate performance of the considered q-ary LDPC codes on the

BSC channel. The binary mother matrix is constructed by using protograph-based algo-

rithm (“proto“) [39], ACE algorithm (“ACE“) [44] and protograph-based ACE algorithm

(“protoACE“). The non-zero entries in the q-ary PC matrix are randomly selected (”RS”),

carefully selected (”CS”) or selected by means of the LDSM algorithm (”LDSM“). t is

the average column weight, whereas dACE and η are the setup parameters for the ACE

algorithm.
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Figure 2.19: Bit Error Rate performance of the considered q-ary LDPC codes on the bi-

nary AWGN channel. The binary mother matrix is constructed by using protograph-based

algorithm (“proto“) [39], ACE algorithm (“ACE“) [44] and protograph-based ACE algo-

rithm (“protoACE“). The non-zero entries in the q-ary PC matrix are randomly selected

(”RS”), carefully selected (”CS”) or selected by means of the LDSM algorithm (”LDSM“).

t is the average column weight, whereas dACE and η are the setup parameters for the ACE

algorithm.
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Figure 2.20: Frame Error Rate performance of the considered q-ary LDPC codes on the

binary AWGN channel. The binary mother matrix is constructed by using protograph-

based algorithm (“proto“) [39], ACE algorithm (“ACE“) [44] and protograph-based ACE

algorithm (“protoACE“). The non-zero entries in the q-ary PC matrix are randomly selected

(”RS”), carefully selected (”CS”) or selected by means of the LDSM algorithm (”LDSM“).

t is the average column weight, whereas dACE and η are the setup parameters for the ACE

algorithm.
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A =




0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0




(2.25)

The 16-ary LDPC codes have been constructed in a disjoint manner. First,

the binary mother matrices are defined by using the following algorithms:

• protograph-based algorithm [39];

• ACE algorithm [44];

• protograph-based ACE algorithm. The connections of the binary mother

matrix are defined by using an ACE algorithm [44] that is constrained

by the protograph that is considered.

Specifically, for the protograph-based PC matrices and the protograph-

based ACE PC matrices the number of transmitted variable nodes of the pro-

tograph has been set to 10, while the number of check nodes of the protograph

has been set to 5. For the protograph-based codes, the protograph is copied

and permuted 250 times to produce the 2500-symbol LDPC codes. On the

other hand, the ACE PC matrices and the protograph-based ACE PC matri-

ces have been constructed by setting the dACE and η parameters [44] to 20 and

1 respectively. The value of η is strictly related to the average column weight

that has been taken into account.

The non-zero entries of the q-ary PC matrices are then chosen by using the

following algorithms:

• random selection. The non-zero elements are randomly selected from the

non-zero elements in GF (q);

• careful selection. The non-zero elements in each row of the q-ary PC

matrix are selected by using the method introduced in [39];
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Figure 2.21: Bit Error Rate performance of the considered q-ary LDPC codes on the qEC

channel. The binary mother matrix is constructed by using protograph-based algorithm

(“proto“) [39], ACE algorithm (“ACE“) [44] and protograph-based ACE algorithm (“pro-

toACE“). The non-zero entries in the q-ary PC matrix are randomly selected (”RS”),

carefully selected (”CS”) or selected by means of the LDSM algorithm (”LDSM“). t is

the average column weight, whereas dACE and η are the setup parameters for the ACE

algorithm.
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Figure 2.22: Frame Error Rate performance of the considered q-ary LDPC codes on the

qEC channel. The binary mother matrix is constructed by using protograph-based algo-

rithm (“proto“) [39], ACE algorithm (“ACE“) [44] and protograph-based ACE algorithm

(“protoACE“). The non-zero entries in the q-ary PC matrix are randomly selected (”RS”),

carefully selected (”CS”) or selected by means of the LDSM algorithm (”LDSM“). t is

the average column weight, whereas dACE and η are the setup parameters for the ACE

algorithm.
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Figure 2.23: Bit Error Rate performance of the considered q-ary LDPC codes on the qSC

channel. The binary mother matrix is constructed by using protograph-based algorithm

(“proto“) [39], ACE algorithm (“ACE“) [44] and protograph-based ACE algorithm (“pro-

toACE“). The non-zero entries in the q-ary PC matrix are randomly selected (”RS”),

carefully selected (”CS”) or selected by means of the LDSM algorithm (”LDSM“). t is

the average column weight, whereas dACE and η are the setup parameters for the ACE

algorithm. BER performance of the regular (”reg”) and optimized (“opt”) LDPC codes

proposed in [43] are provided as well.
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Figure 2.24: Frame Error Rate performance of the considered q-ary LDPC codes on the

qSC channel. The binary mother matrix is constructed by using protograph-based algo-

rithm (“proto“) [39], ACE algorithm (“ACE“) [44] and protograph-based ACE algorithm

(“protoACE“). The non-zero entries in the q-ary PC matrix are randomly selected (”RS”),

carefully selected (”CS”) or selected by means of the LDSM algorithm (”LDSM“). t is

the average column weight, whereas dACE and η are the setup parameters for the ACE

algorithm.
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• linearly dependent set maximization algorithm of subsection 2.3.4.

The channels that have been considered are binary-input channels and q-

ary-input channels. Moreover, the aforesaid channels are discrete-output chan-

nels and continuous-output channels. Let Xc be the channel input alphabet

and let Yc be the channel output alphabet. Thus, each binary-input (q-ary-

input) channel output in Section 2.3.1 lives in a proper Yc, i.e., y
j
bk
(yk) ∈ Yc.

Specifically, the binary-input channels are characterized by a channel input

alphabet Xc = {0, 1}, while the q-ary-input channels are characterized by

Xc = {0, . . . , q − 1}. The channels are discrete-output if |Yc| < +∞. On the

other hand, if Yc = C, the channel output is continuous, where C is the field of

the complex numbers. In case the channel is discrete-output, it is possible to

describe the given channel by a matrix Q = {Qij}i=0,...,|Yc|−1;j=0,...,|Xc|−1, called

transition probability matrix. Each term Qij represents the probability that

the given readout symbol is yi ∈ Yc, while the stored data is xj ∈ Xc: that is,

qij = P (y = yi|x = xj).

The binary-input channels that have been taken into account in this section

are the following:

• binary erasure channel (BEC). The related channel output alphabet is

Yc = {0, ?, 1}. ? represents the uncertainty state. The transition proba-
bility matrix Q associated with the BEC can be written as follows:

Q =




1− ǫBEC 0

ǫBEC ǫBEC

0 1− ǫBEC


 (2.26)

In other terms, since the transmitted data live in GF (2), P (y = i|x =

i) = 1 − ǫBEC , P (y = i|x = j) = 0, P (y =?|x = i) = ǫBEC ∀i, j ∈
{0, 1}, i 6= j.

• binary symmetric channel (BSC). The related channel output alphabet

is Yc = {0, 1}. The transition probability matrix Q associated with the
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BSC can be written as follows:

Q =

[
1− ǫBSC ǫBSC

ǫBSC 1− ǫBSC

]
(2.27)

In other terms, since the transmitted data live in GF (2), P (y = i|x =
i) = 1− ǫBSC , P (y = j|x = i) = ǫBSC ∀i, j ∈ {0, 1}, i 6= j.

• binary AWGN channel. Each codeword is binary phase shift keying

(BPSK) modulated. The channel output associated with the k-th bit

of the binary representation of the j-th symbol may be expressed as

yjbk = sjbk + nj
bk
. The noise component nj

bk
has variance σ2. Thus,

P (sjbk |y
j
bk
) = P (xjbk |y

j
bk
) =

1

2πσ2
exp

(
−
(yjbk − sjbk)

2

2σ2

)
.

The q-ary-input channels that have been taken into account in this section

are the following:

• q-ary erasure channel (qEC). The related channel output alphabet is

Yc = {0, 1, . . . , q − 1, ?}. ? represents the uncertainty state. The tran-
sition probability matrix Q associated with the qEC can be written as

follows:

Q =




1− ǫqEC 0 . . . 0 0

0 1− ǫqEC . . . 0 0
...

. . .
...

0 0 . . . 0 1− ǫqEC

ǫqEC ǫqEC . . . ǫqEC ǫqEC




(2.28)

In other terms, since the transmitted data live in GF (q), P (y = i|x =

i) = 1 − ǫqEC , P (y = i|x = j) = 0, P (y =?|x = i) = ǫqEC ∀i, j ∈
GF (q), i 6= j.

• q-ary symmetric channel (qSC). The related channel output alphabet is

Yc = {0, . . . , q−1}. The transition probability matrix Q associated with
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the qSC can be written as follows:

Q =




1− ǫqSC
ǫqSC
q − 1

. . .
ǫqSC
q − 1

ǫqSC
q − 1

ǫqSC
q − 1

1− ǫqSC . . .
ǫqSC
q − 1

ǫqSC
q − 1

...
. . .

...
ǫqSC
q − 1

ǫqSC
q − 1

. . .
ǫqSC
q − 1

1− ǫqSC




(2.29)

In other terms, since the transmitted data live in GF (q), P (y = i|x =

i) = 1− ǫqSC , P (y = j|x = i) =
ǫqSC
q − 1

∀i, j ∈ GF (q), i 6= j.

• q-ary AWGN channel. Each symbol is symmetric ultracomposite [6]

Gray-labeled 16-QAMmodulated with a bandwidth efficiency of 2 bits/symbol

(i.e. a coding rate R equal to 0.5). The channel output in Section 2.3.1

may be expressed as yκ = sκ + nκ = (sκI
+ jsκQ

) + (nκI
+ jnκQ

) = yκI
+

jyκQ
, where subscripts I and Q correspond to the in-phase and quadra-

ture components and κ = 1, . . . , N . The in-phase and quadrature noise

components nκI
, nκQ

are independent with the same variance σ2. Thus,

P (sκ|yκ) = P (xκ|yκ) =
1

2πσ2
exp

(
−(yκI

− sκI
)2 + (yκQ

− sκQ
)2

2σ2

)
.

Figures from 2.15 up to 2.26 show the BER and FER performance of the

16-ary LDPC codes that have been constructed over the aforesaid channels.

The correspondences between figures and considered channels are listed in

Table 2.3. The red solid line, the blue dashed line and the black dash-dot line

represent a LDPC code whose binary mother matrix has been constructed by

means of protograph-based algorithm, protograph-based ACE algorithm and

ACE algorithm respectively. Moreover, the square marker, the circle marker

and triangle marker represent a LDPC code whose non-zero entries binary in

the q-ary PC matrix mother matrix are randomly selected, carefully selected

and selected by using the LDSM algorithm respectively. The yellow and green

solid lines in Figure 2.23 represent the regular and optimized codes exposed

in [43] respectively.

The code that has been constructed by means of the protograph-based
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Figure 2.25: Bit Error Rate performance of the considered q-ary LDPC codes on the q-

ary AWGN channel. The binary mother matrix is constructed by using protograph-based

algorithm (“proto“) [39], ACE algorithm (“ACE“) [44] and protograph-basedACE algorithm

(“protoACE“). The non-zero entries in the q-ary PC matrix are randomly selected (”RS”),

carefully selected (”CS”) or selected by means of the LDSM algorithm (”LDSM“). t is

the average column weight, whereas dACE and η are the setup parameters for the ACE

algorithm.
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Figure 2.26: Frame Error Rate performance of the considered q-ary LDPC codes on the

q-ary AWGN channel. The binary mother matrix is constructed by using protograph-based

algorithm (“proto“) [39], ACE algorithm (“ACE“) [44] and protograph-based ACE algorithm

(“protoACE“). The non-zero entries in the q-ary PC matrix are randomly selected (”RS”),

carefully selected (”CS”) or selected by means of the LDSM algorithm (”LDSM“). t is

the average column weight, whereas dACE and η are the setup parameters for the ACE

algorithm.
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Table 2.3: Summary of the figure-channel correspondences

Figures Channels

2.15, 2.16 BEC

2.17, 2.18 BSC

2.19, 2.20 BAWGNC

2.21, 2.22 qEC

2.23, 2.24 qSC

2.25, 2.26 qAWGNC

algorithm in [39] show the best performance in the waterfall region. However,

it also shows the worst performance in terms of error floor on every channel

that has been considered.

The codes whose binary mother matrix has been constructed using the

protograph-based ACE algorithm have the closer error-rate performance in

the waterfall region to those of the protograph-based q-ary LDPC code. Fur-

ther, they show lower error floors than the protograph-based q-ary LDPC

code. Specifically, the selection of the non-zero entries in the q-ary PC matrix

delivered by the algorithm in [39] provides an effective improvement of the

performance w.r.t. the random selection algorithm. This benefit is shown in

the waterfall region as in the error floor region as well.

On the other hand, the q-ary LDPC codes whose binary mother matrix

is constructed by means of the ACE algorithm show the best error floor per-

formance over each considered channel. The error floors of these codes are

significantly lower than those related to protograph-based ACE constructed

codes. In fact, the protograph constraints induce a sort of ”super-structure“

on the bipartite graph. Therefore, the q-ary stopping set mitigation of the

protograph-based ACE algorithm might not be as effective as that delivered

by the standard ACE algorithm for quasi-regular and irregular codes.
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Further, the selection of the non-zero entries performed by using the LDSM

algorithm yields orders of magnitude of improvement in the error floor region

for every channel that has been taken into account w.r.t. the selection algo-

rithm in [39]. The gain provided by LDSM algorithm is higher in case of BEC,

binary AWGN channel and q-ary AWGN channel, while it gets tinier as q-ary-

input discrete-output channels (that is, qEC and qSC) are considered. In fact,

the effect of q-ary linearly dependent sets gets reduced as partial erasures are

avoided. Thus, the benefit provided by LDSM algorithm gets lower as well.

Error-rate performance over binary-input and q-ary-input symmetric chan-

nels show how the shape of the feasibility region strongly influences the de-

coder behavior. In fact, as full and partial erasures are avoided, the error

events induce several constraints over the feasibility region so that the decoder

can hardly converge to the correct codeword. Thus, the MP algorithm would

take a very large maximum number of iterations to try to solve the decod-

ing problem, leading to a very expensive computational cost. On the other

hand, customed designed front-end architectures might be designed to coun-

teract the aforesaid effect with an acceptable computational complexity. The

observations delivered by [43] might be useful in that sense.

2.3.6 Conclusions

In this section, a deep geometrical and graphical analysis of the q-ary LDPC

decoding problem has been addressed. Further, construction methods for de-

signing q-ary LDPC codes with low error floors and moderate field order have

been proposed. It has been shown how enlarging the size of the aforesaid

topological structures provides substancial improvements in terms of error-

rate performance over other construction algorithms. In fact, the relationships

between decoding failures and specific topological structures such as q-ary

stopping sets and q-ary linearly dependent sets can be efficiently counteracted

by the proposed algorithms. Specifically, combining ACE algorithm [44] and

LDSM algorithm leads to a benefit by orders of magnitude in terms of error
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floor over the other construction algorithms that have been taken into account.

Finally, simulation results over BEC and binary AWGN channel are very in-

teresting as those channels can model the readout channel of emerging storage

technologies [41, 42].

2.4 q-ary LDPC codes robust to error bursts

Recent research findings propose LDPC as a possible alternative to RS coding

in systems such as magnetic recording channels for hard-disk drives (HDD)

[46], [48]. Near capacity performance and the ability to correct large error

bursts make these codes a good alternative to powerful algebraic decoding

of non-binary RS codes with large symbols. In this sense, parallel research

works go toward the direction of improving RS performance introducing the

soft decoding concept of LDPC (see [47] and references therein). However, the

RS parity-check matrix is not suitable for the conventional MP algorithm; in

fact, RS soft decoding is still an open problem, especially when complexity is

considered.

Non-binary, or q-ary, LDPC codes may be used in HDD in order to increase

the robustness against error bursts, caused by media defects and thermal as-

perities [48]. The performance of these codes outperforms both binary LDPC

and RS, while the major drawback is the complexity which increases with

Ntq2, where q is the number of symbols defined in the finite field GF (q), N

is the coded block length and t is the average weight of PC matrix columns,

i.e. the number of non-zero elements per column [3]. In this section decoder

complexity is neglected. However, recent works indicate that it can be reduced

either using the Fast Fourier Transform [48], [4] or simplifying the decoding

rules for high rate codes, considering the dual codes [49].

In [46] the capability to correct an erasure burst, when no errors are ex-

pected in the guard band (i.e. all the symbols outside the burst are perfectly

known at the receiver), is measured by means of a compact algorithm which
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provides the ”maximum resolvable erasure-burst length”, MREBL, defined as

”the longest string of erasures that the codëı¿1
2
s decoder is guaranteed to fill

in with the correct bit values (or symbol values ...), no matter where the burst

starts in”. The algorithm inspects the matrix H , looking for the error locations

in a burst which can be resolved by checks at each iteration. Here, MREBL

will be considered in conjunction with the number of iterations the algorithm

requires to find MREBL. The capability to correct erasure bursts has been

related to the parity-check matrix by means of the minimum space distance

(mSD), that is the minimum distance between non-zero entries of parity-check

matrix rows [48]. mSD represents also a lower bound for MREBL. In [48],

the authors include the mSD maximization in a PEG construction algorithm

for the PC matrix. A similar approach has been reported in [50] for binary

LDPC. Anyway, there is no difference between the binary and non-binary

case as long as the usual way to build a q-ary PC matrix is to multiply the

non-zero entries of a binary mother matrix H by random elements taken in

GF (q) [48], [3], [4]. It’s obvious that the MREBL and mSD as measured on

the mother parity-check are to be multiplied by log2(q) in order to obtain the

effective burst length in bits. A similar burst-error-correction capability esti-

mation is reported in [15], [16] for structured LDPC Gilbert codes which are

very similar to the so-called array codes [17]. In reality, channels are often

affected by random noise and erasures. In this sense, in all the cited works

performance has been evaluated by adding error bursts in an AWGN channel

or in magnetic recording channel.

The main results presented in this section are:

1. the optimization of the PC matrix, monitoring in a PEG algorithm the

MREBL and the mSD measures introduced in [46], [48];

2. the comparison among different matrix constructions, optimizing the

mSD and the MREBL;

3. validation of the most performable scheme by simulations in burst noise

AWGN and magnetic recording channels.
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Section 2.4.1 is devoted to the description of the modified PEG algorithms

for the PC matrix design. The mSD has been inserted in the PEG search in

a way similar to [46], while the MREBL has been included progressively in

order to reduce the computation time and maximize the probability of find-

ing a good LDPC matrix without cycles. The subsequent section describes

the modeled system with particular emphasis on the perpendicular magnetic

channel. Sections 2.4.3 and 2.4.4 show simulation results on AWGN and per-

pendicular magnetic recording (PMR) channels, followed by some conclusion

and perspective of future works which conclude this section.

2.4.1 Modified PEG algorithms

An empiric procedure to build a Tanner graph maximizing the girth g0 is

suggested in [16], [18]: the PEG algorithm is based on a pre-determined weight

distribution of symbol and check nodes. The graph construction is based on

iterative edge-by-edge steps, maximizing the local girth for given nodes. In

the present section, girth ≥ 6 is imposed. The obtained matrix may be either

regular or irregular. In the seminal work [4], the author suggests a method,

based on Montecarlo simulations, to find the best average column weight of a

non-binary LDPC code. Following this reasoning, for code-rate 8/9 GF (16)

codes, it has been observed that an average column weight equaling 2.88 is the

best choice. This is the result of an empirical optimization based on AWGN

channel simulations results obtained with matrices characterized by different

average column weights. Future works might be devoted to implementing a

more general search algorithm as suggested in [4], [20]. According to this result,

the matrices in this section share an average column weight 2.88; the rate is

8/9 and size is (128,1152) GF (16) symbols. In the following two modified PEG

algorithms which include the mSD and the MREBL constraints are described.
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PEG with the mSD constraint

Let the Tanner graph consists of n symbol nodes sj , 0 ≤ j ≤ n − 1 , and m

check nodes ci, 0 ≤ i ≤ m − 1. Let dsj , dci be the degree of symbol node

sj and of check node ci, respectively, where node degree means the number

of edges incident to it (this value is defined by weights distributions λ(x) and

ρ(x)), Ex is the set of edges incident to node x, while E
y
x represents the yth

edge incident to node x. Let N l
sj
be the set of check nodes that can be reached

from symbol node sj by l edges or less and N l
sj
the complementary set of N l

sj

: in other words, N l
sj
∪N l

sj
= Vc, where Vc is the set of all check nodes in the

graph. Finally, let Bsj be the set of check nodes {cp} that can be reached from
symbol node sj such that, given two edges incident to cp, i.e. E

u
cp ← (cp, sa)

and Ev
cp ← (cp, sj) ∀u, v ∈ {1, ..., dcp}, u 6= v and a ∈ {0, ..., n − 1}, a 6= j ,

|a− j| ≥ L, with fixed L: at this point, it is possible to define N l
sj
∩Bsj = Bl

sj

and L means the desired mSD length. The procedure of constructing the Tan-

ner graph is the following:

for j = 0 to n− 1 do

begin

for k = 0 to dsj − 1 do

begin

if j = 0

Asj = Vc

Al
sj
= N l

sj

Al+1
sj

= N l+1
sj

else

Asj = Bsj

Al
sj
= Bl

sj

Al+1
sj

= Bl+1
sj
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end

if k = 0

E0
sj
← edge(ci, sj) where E

0
sj
is the first edge incident to sj and ci

is one check node picked from the set Asj such that it has the

lowest check degree under the current graph setting
⋃j−1

r=0Esr

else

expanding a tree from symbol sj up to depth l under the cur-

rent graph setting such that Al
sj
6= ∅ but Al+1

sj
= ∅, or the

cardinality of Al
sj
stops increasing but is less than m, then

Ek
sj
← edge(ci, sj), where E

k
sj
is the kth edge incident to sj

and ci is one check node picked from the set Al
sj
having the

lowest check-node degree

end

end

end

PEG with the MREBL constraint

The construction procedure of the Tanner graph is similar to the one described

in the paragraph above, except for the meaning of some definitions: Bsj rep-

resents the set of check nodes {cq} that can be reached from symbol node

sj such that cq 6= c̃, |Bsj | = m − 1, where c̃ ∈ {ci, i = 0, ..., m − 1} is the
check̈ı¿1

2
node with the lowest degree under the current graph setting that in-

cludes the symbol nodes sa, a ∈ ILj , where L is fixed and ILj is defined as the

following:

ILj =

{
[0, j] if j < L

[j − L, j] otherwise
(2.30)
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According to these assumptions, it is possible to define N l
sj
∩ Bsj = Bl

sj

and L as the desired MREBL length.

Parity-check matrices

In order to test different way of optimizing the PC matrix with respect to the

burst error correction capabilities, the five LDPC code matrices reported in

table 2.4 have been considered. The first matrix represents the result of a mild

mSD maximization which results also in a good MREBL value, the second

and the third ones have been obtained by respectively optimizing the MREBL

and the mSD, while the last two have been constructed with a standard PEG

search algorithm without burst error constraints. For all the matrices the

mSD, MREBL and the number of maximum iterations requested for correcting

a burst of length equal to MREBL have been computed. The GF (16) q-

ary codes are obtained by multiplying each non zero element of the mother

PC matrix by a random number defined in the non-binary field. The error

burst length correction capabilities, reported in table 2.4, are given in bits (i.e.

MREBL x log2(q)). For sake of reader’s convenience the MREBL of the RS

code adopted for the comparison is given. For each considered PC matrix the

variable distributions is λ2 = 0.112 and λ3 = 0.8889 , where λ(x) =
∑dv

i=2 λix
i−1

(where dv represent the maximum value of symbol node degree), in agree with

notation introduced in [21] and proposed in [22].

2.4.2 System model description

A non-binary LDPC coded scheme has been tested on AWGN channel and a

perpendicular magnetic recording channel. The LDPC decoder runs a maxi-

mum of 25 iterations of a standard MP algorithm ( [48], [3], [4]) in both cases.



2.4. Q-ARY LDPC CODES ROBUST TO ERROR BURSTS 81

Table 2.4: PC matrices

PC matrix mSD MREBL MREBL number of iterations

mat1 20 100x4 23

mat2 1 104x4 28

mat3 38 90x4 14

mat4 1 85x4 10

mat5 1 94x4 12

RS - 25x10 -

The AWGN channel

On AWGN channel a simple BPSK modulation has been adopted. In order to

evaluate the performance of the different codes in presence of long bursts, an

error burst where Nb BPSK symbols are null is injected.

The perpendicular magnetic recording channel (PMRC)

User data in a HDD channels are generally encoded with a run-length-limited

code (RLL) followed by a Reed-Solomon code. In this section RLL encoding

is neglected. The Reed-Solomon is defined over GF (210); in the simulation

results the power correction is set equal to 25 symbols. User data are sepa-

rated in blocks, namely sectors, 512 bytes long. Here, the non-binary LDPC

are supposed to replace the RS code. As demonstrated later, it may be ben-

eficial to consider also an interleaver to separate channel and LDPC code. In

this case, the write path is modified according to the Figure 2.27. User bits

are first scrambled by the interleaver and then encoded. Parity bits are then

evenly distributed along user bit stream. This approach preserves the RLL

constraints [51], possibly applied to the bits uk. Encoded bits are used to

generate the write currents which determine, through the inductive write disk
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head, the magnetization of the platter magnetic media; a different magnetiza-

tion is applied whenever a bit differs from the previous one.

Figure 2.27: Write path schematic with interleaver.

The readback signal s(t) of the PMR channel can be described by the

following equation [52]:

s(t) =
1

2

∑
akh(t− kT + τk) + n(t) (2.31)

where ak = (wk − wk−1), wk ∈ {+1,−1} are the recorded data and n(t)

is the electronic noise. h(t) is the transition waveform; it corresponds to the

current modification induced when the magneto-resistive read head detects a

magnetic field change. The transition waveform model is:

α · erf
(

2
√
ln2

T · CBDt
)
+ (1− α) · tanh

(
ln(3 + 2

√
2)

T · CBD t

)
(2.32)

with α = 0.7. The coded bit density CBD is defined as PW50/T, where

PW50 is the width of the transition waveform derivative at half the maximum

amplitude. CBD will be derived as CBD = UBD/Rate where UBD is the user

bit density (the uncoded bits) and Rate takes into account the redundancy of

Reed-Solomon or LDPC code. The jitter transition noise (or media noise) is

generated by the uncertainty of the transition position τk which is a zero-mean

Gaussian random variable. The SNR definition is given by:

SNRdB = 10 log10

(
1

N0 +M0

)
(2.33)
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The noise power is split into media noiseM0 and thermal noiseN0 according

to the parameter 0 ≤ mix ≤ 1, so that:

N0 = mix · 10−SNRdB/10

M0 = (1−mix) · 10−SNRdB/10

(2.34)

The jitter noise power is given by:

M0

2
∼= Pt · σ2

τ

∫ +∞

−∞

(
dh(t)

dt

)2

dt (2.35)

where στ is the variance of the random variable τ and Pt = 0.5, is the

transition probability.

The read path described in Figure 2.28 consists of an anti-alias continu-

ous time filter and an analog-to-digital converter (ADC) followed by a digital

adaptive 10 taps finite impulse response (FIR) filter which equalizes the read

signal to match a generic partial response target. A maximum likelihood se-

quence detection (MLSD) is performed with a data-dependent-noise-predictive

(DDNP) [53] soft-output Viterbi algorithm (SOVA) [54]. The SOVA algorithm

includes the modification proposed in [55] which makes the performance equiv-

alent to the Max-Log-MAP detection algorithm. The SOVA trellis has 8 states.

The branch whitening filters have three taps. For this section simulations the

partial response target is [4 10 7 -2]. The LDPC decoder is possibly separated

by the interleaving block. Error bursts are simulated with an attenuation of

Nb consecutive readback signal samples in a random location along the sector;

thermal and media noise are added after sample attenuation.

2.4.3 AWGN Simulation Results

Performance has been evaluated by comparing the proposed scheme with a

non-binary RS coding scheme with the same redundancy, designed and short-

ened to work in HDD sector of 512 bytes as already mentioned in section 2.4.2.
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Figure 2.28: Read path schematic.

In Figure 2.29 the performance for the sector-failure rate (SFR) versus the av-

erage signal-to-noise ratio per bit (Eb/N0), is shown in presence of only AWGN

noise. According to the main literature results, q-ary LDPC outperform RS

of about 2 dB. Furthermore all the PC matrices considered show the same

performance according to the fact that they have all been constructed by a

PEG search with the same average column weight t = 2.88.
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Figure 2.29: Performance results on AWGN channel.

Figure 2.30 and 2.31 show performance results on AWGN channel with

burst erasure of length respectively of 100 and 150 bits. It seems that the

PC matrix optimized for maximizing the mSD exhibits the best performance.

Actually, the MREBL measure assumes an ideal erasure bursts where perfect

knowledge of the other bits is given. In real burst-error channel situations,
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erasure bursts are observed in presence of other noise sources.
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Figure 2.30: Performance results on AWGN channel in presence of bursts of length = 100

bits.

2.4.4 PMRC Simulation Results

Results in Figure 2.32 show that in absence of error burst, codes generated with

(mat1) or without (mat5) mSD constraint performs similarly. When an error

burst of 150 bits with attenuation 0.5 affects the sector, it is confirmed that

the mSD optimization provides with better performance. Additionally, the

performance of the designed code with the largest mSD (mat3) is reported. Its

burst robustness is further confirmed. Performance can be compared with a RS

code with same redundancy. The LDPC gain is about 1dB. However, RS slopes

looks steeper compared to LDPC. The present day explanation is given by the

absence of an interleaver separating the ISI detector and the LDPC decoder.

In fact, ISI detector generates short burst of correlated errors; most of them

affect two to six consecutive bits. Correlated error can results in a suboptimal

estimation of the GF symbol likelihoods which are the LDPC decoder input.

To prove this point, the same LDPC codes have been simulated with a random

interleaver as already described in subsection 2.4.2. It is obvious that, in this
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Figure 2.31: Performance results on AWGN channel in presence of bursts of length = 150

bits.

case, the optimization of the code against error burst is lost. Nevertheless,

their performance are significantly improved as demonstrated in Figure 2.33.

Burst error optimization gain is no longer apparent. As a consequence, further

work is necessary in order to optimize the codes separated by an interleaver.

2.4.5 Conclusions

The presented results highlight some interesting design parameters to take into

account for the construction of efficient burst error correction LDPC codes.

Although the MREBL is a valid performance indicator of a code under ideal

noise burst, mSD optimization looks more promising when burst error correc-

tion robustness is required in random noise channels like AWGN and PMRC.

Performance on AWGN channel demonstrate that non-binary LDPC codes

outperform RS codes in presence of long bursts. On the other hand, on PMR

channels, non-binary codes suffers from performance degradation due the ISI

detector correlated outputs. Two interesting perspectives of development are

both the joint optimization of the PC matrix and interleaver and a more so-
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Figure 2.32: Performance results on PMR channel: results without and with a bursts of

length = 150 bits are compared with the RS code.

20 20.5 21 21.5 22 22.5 23 23.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR

S
F

R

RS GF(2
10
) t=25

RS GF(2
10
) t=25 with burst

mat1

mat1 with burst

mat3

mat3 with burst

mat5

mat5 with burst

Figure 2.33: Performance results on PMR channel: results without and with a bursts of

length = 150 bits are compared with the RS code; an interleaver separates ISI detector and

LDPC decoder.
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phisticated method for computing the likelihoods of the non-binary symbols

in order to match the detector soft outputs to the LDPC decoder.



Chapter 3

Efficient decoding of q-ary

LDPC codes

Recently q-ary LDPC codes have been used to achieve performance close to the

channel capacity in different channel environments, from satellite communica-

tions to magnetic data storage systems. Design of receivers employing these

codes for transmissions over channels affected by intersymbol interference is

still an open issue. In fact, detection-and-decoding systems have to face the

trade-off between error-rate performance and complexity. In the next Sec-

tion some receiver architectures for 16-ary LDPC codes are compared: serial

and turbo concatenated schemes and a joint message-passing based receiver

as well. Performance of these systems are evaluated over three different par-

tial response (PR) channels, using simulations. Finally, future directions for

research are discussed.

89
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3.1 Efficient receivers for q-ary LDPC coded

signals over Partial Response channels

Intersymbol interference affects the most of communication systems in which

noise implies frequency shifts in the channel output, like long-haul optical

transmissions and magnetic recording systems. Partial response channels rep-

resent a discrete model useful in order to approximate the ISI channel. The

optimal receiver for partial response channels may be realized by a maximum

likelihood sequence detector, using the estimated channel impulse response

(CIR) in a Viterbi algorithm [70] [68]. A Bahl-Cocke-Jelinek-Raviv (BCJR)

algorithm [66] can replace a Viterbi processor if the soft output information

is employed in a concatenated scheme, feeding an outer channel decoder [67].

Recently turbo codes [2] and LDPC [1] codes have been used to achieve BER

lower than other typical error-correcting codes (like Reed-Solomon) in appli-

cations where ISI has to be very efficiently counteracted.

Recent works reveal that q-ary LDPC may be applied to magnetic record-

ing channels, allowing reduced complexity schemes [48] and robustness to burst

errors [38]. Historically, considering a LDPC coded system, the most popu-

lar scheme to improve error-correction performance over channels affected by

ISI has been to serially concatenate a soft-output detection algorithm and

the binary LDPC decoder. However, a greater performance improvement can

be achieved incorporating the channel detector in the iterative decoder: this

implies a turbo concatenation of the two system blocks and several papers in

literature call that configuration “turbo equalization”. Further, in [59] [63] [65]

an LDPC coded detection-and-decoding system implemented by a joint algo-

rithm based on the MP algorithm is addressed.

In this section some different q-ary LDPC coded architectures for partial

response channels are compared, paying particular attention to the properties

of the detector and the decoder selected for each one. Specifically, architectures

that employ a serial and a turbo concatenation of detector and decoder are
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analyzed. Moreover, the joint detection-and-decoding scheme is extended to

q-ary LDPC codes.

The section is organized as follows. Section 3.1.1 introduces the system

model for the different architectures that are discussed in Section 3.1.2: the

serially concatenated architecture, the turbo concatenated architecture and the

joint MP based architecture. Moreover, Section 3.1.2 discusses the computa-

tional complexity of each receiver architecture. In Section 3.1.3 the simulation

results are given, as the practical aspects of the system implementing as well.

Conclusions about future research development conclude the section.

3.1.1 System Model

Figure 3.1: Block diagram of the basic system model for q-ary LDPC coded signals over

binary-input PR channels

In this section, the performance of three receivers for q-ary LDPC coded

signals over PR channels are analyzed. These systems are the serially concate-

nated architecture, the turbo concatenated architecture and the joint message

passing based architecture.

For each of these architectures, the basic system model is shown in Figure
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3.1. The q-ary LDPC encoder output is a length-N codeword ξ = [ξi]i=1,...,N ,

ξi ∈ GF (q = 2p) ∀i = 1, . . . , N such that

Hξ = 0 (3.1)

where H = {Hij}i=1,...,M,j=1,...,N ,Hij ∈ GF (q = 2p) is the Parity Check

matrix. The codeword ξ represents the input to the BPSK modulator. After

the binary-input length-ν memory PR channel, additive white Gaussian noise

is added. The received signal, properly demapped, is then sent to the detection-

and-decoding system.

Depending on the receiver architecture, the signal is detected and decoded

in an appropriate manner. Each receiver architecture that has been taken into

account employes a q-ary LDPC decoder. Moreover, the detector utilizes a

BCJR algorithm that can be bit-based or symbol-based as well.

The next subsections introduce the two detectors for the architectures con-

sidered in this section: the Bit-Based and the Symbol-Based detectors respec-

tively.

Bit-based detector

The Bit-based (BB) detector is represented by a standard BCJR algorithm [66].

The symbol-wise aposteriori probabilities (APPs) are approximated applying

the BCJR algorithm to the PR channel and then multiplying the APPs that

form a symbol [58], [56]. The symbol-wise APPs are passed to the q-ary LDPC

decoder to initialize the a priori probabilities.

Symbol-based detector

The symbol-based (SB) detector [58], [69] modifies the way the probability

functions are updated when compared to the original BCJR algorithm. In [69],

the authors develop a method, called optimal subblock-by-subblock detector

(OBBD), in order to calculate the APP of a block of p consecutive bits. In [58],
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the authors show that simplifications of the algorithm can be made for the case

of the binary-input ISI channels, specifically for p ≥ ν.

The SB detector is as follows.

Let a ∈ GF (q = 2p) be an information symbol. It is possible to map

each symbol in GF (q = 2p) to a distinct sequence of p bits; in other terms,

a = (bp−1, bp−2, . . . , b1, b0) = b0p−1, where bi ∈ GF (2). Let ζτ be the state at

time τ . The a posteriori probability that the information symbol ξ equals a

conditioned on the length-Nb(= Np) received bit sequence rNb

1 is:

P (ξ = a|rNb

1 ) =
P (ξ = a, rNb

1 )

P (rNb

1 )

=
1

P (rNb

1 )

∑

ζ

∑

ζ′

P (ξ = a, ζτ = ζ, ζτ−p = ζ ′, rNb

1 ) (3.2)

Equation (3.2) is obtained using Bayes’ rule and the principle of total prob-

ability. By applying Bayes’ rule and the Markov property that events after

time τ only depend on the current state ζτ and are independent of past obser-

vations [58], it is possible to write (3.2) as follows:

P (ξ = a, ζτ = ζ, ζτ−p = ζ ′, rNb

1 ) = P (rNb

1 |ζτ = ζ)·

·P (ξ = a, ζτ = ζ, rττ−(p−1)|ζτ−p = ζ ′) · P (ζτ−p = ζ ′, rτ−p1 ) (3.3)

= βτ (ζ) · γa(τ−(p−1),τ)(ζ, ζ ′) · ατ−p(ζ
′)

The term βτ (ζ) is the backward state metric, the term γa(τ−(p−1),τ)(ζ, ζ
′) is

the branch transition probability and the term ατ−p(ζ
′) is the forward state

metric. Using the Bayes’ rule and the fact that the symbol apriori probabilities

are state-independent, the branch transition metric can be written as follows:

γa(τ−(p−1),τ)(ζ, ζ
′) = P (ξ = a)·

·P (ζτ = ζ |ξ = a, ζτ−p = ζ ′)· (3.4)
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·P (rττ−(p−1)|ζτ = ζ, ξ = a, ζτ−p = ζ ′)

If state ζ at time τ is connected to state ζ ′ at time τ − p via the input

sequence ξ = a then P (ζτ = ζ |ξ = a, ζτ−p = ζ ′) = 1, otherwise P (ζτ = ζ |ξ =
a, ζτ−p = ζ ′) = 0. The term P (rττ−(p−1)|ζτ = ζ, ξ = a, ζτ−p = ζ ′) is a function

of the channel characteristic; in a PR channel with AWGN the pdf can be

calculated as

(
1√
πN0

) exp(
−∑p−1

i=0 (rτ−i − yi)
2

N0

) (3.5)

In (3.5) N0/2 is the noise variance and y0p−1 is the PR channel output

sequence that corresponds to the input sequence a = b0p−1.

The forward state metric ατ (ζ) and the backward state metric βτ (ζ) can

be updated as in the original BCJR algorithm [66].

In the case of binary-input length-ν memory ISI channels, since the states

represent subsequences of the input sequence [58], the equation (3.3) can be

expressed as follows:

P (ξ = a, ζτ = ζ, ζτ−p = ζ ′, rNb

1 ) =

= P (ξ = b0p−(ν+1), ζτ = ζ, ζτ−(p−ν) = ζ ′′, rNb

1 ) (3.6)

= ατ−(p−ν)(ζ
′′)γ

b0
p−(ν+1)

(τ−(p−(ν+1)),k)(ζ
′′, ζ)βτ(ζ)

In (3.6) ζ ′′ is the state that corresponds to the shift register configuration

after an input of ν bits. This simplification is valid when p ≥ ν. Therefore,

for sake of generality, this section refers the SB detecting structure described

in [69].

3.1.2 Receiver architectures

The next three subsections introduce the three detection-and-decoding archi-

tectures considered in this section: the serially concatenated, turbo concate-
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nated, and joint MP based architectures respectively. In the forth subsection

the computational complexity of each proposed architecture is discussed.

Serially concatenated architecture

This subsection considers a serially concatenated architecture (SCA).

q-ary LDPC codewords are properly mapped to a BPSK modulated signal.

At the receiver, the detector defines the a priori probabilities that have to

be provided to the q-ary LDPC decoder. The decoding employs the message

passing algorithm, which is described in detail in [3], [4]. In this section it is

assumed that detection may be bit-based (subsection 3.1.1) and symbol-based

(subsection 3.1.1): both detectors involve the BCJR algorithm [66].

Turbo concatenated architecture

In this subsection, an architecture that employs a turbo concatenated receiver

is considered.

In this turbo concatenated architecture (TCA), the transmitted signal is a

q-ary LDPC codeword that has been properly mapped in a BPSK sequence. At

the receiver, a soft detector incorporates extrinsic information provided by the

q-ary LDPC decoder, and the LDPC decoder incorporates soft information

provided by the detector. Extrinsic information between the detector and

decoder is exchanged in an iterative way until an LDPC codeword is found

or a maximum number of iterations are performed [4], [67], [60], [61]. With

LDPC codes, convergence to a codeword is easily detected by the receiver when

the parity check equations are satisfied. The decoding employs the message

passing algorithm, which is described in detail in [3], [4]. The detection may

employ a bit-based and a symbol-based BCJR algorithm: these detectors are

introduced in subsections 3.1.1 and 3.1.1 respectively.
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Joint MP based architecture

In this subsection an architecture that employs a joint detection-and-decoding

system based on a MP algorithm is considered.

In the architectures introduced in subsections 3.1.2 and 3.1.2 the channel

constraints are represented by the channel trellis and the code constraints are

represented by the bipartite graph. In the joint MP based architecture, the

channel constraints are represented as a graph, therefore the MP detection

algorithm has to be designed to operate on this graph [65]. Specifically, in

this subsection both bit-based and symbol-based BCJR algorithms operating

on the channel constraints are considered. The channel constraints are repre-

sented on the graph by a set of nodes called channel nodes.

Figure 3.2: A graph that represents channel constraints and the parity check of the LDPC

code. Circles represent variable nodes, squares represent parity check nodes and triangles

represent channel nodes

The graph obtained by including the parity check nodes to the channel

graph is tripartite, as shown in Figure 3.2: circles correspond to the variable

(or symbol) nodes ξκ, squares to the parity-check nodes zκ and triangles to the

channel nodes ǫκ.

A parity check node i and a variable node j are connected if the value of
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Hij is not zero. A channel node k is connected to the variable node j if the

channel response involves bits from the binary representation of ξk and ξj.

Following the notation in [3], let N(i) = {j : Hij 6= 0} be the set of symbols
linked to check node i and let the checks linked to symbol j belong to M(j) =

{i : Hij 6= 0}. Moreover, let L(k) be the set of the channel nodes connected to
the k-th symbol node and let I(l) be the set of the symbol nodes connected to

the channel node l.

At this point, for every a ∈ GF (q) two quantities are set up, Qa
ij and R

a
ij ,

for each non-zero element of the PC matrix H . The first is defined as the

probability that j-th symbol is a, depending on the information flowing by the

whole checks except the i-th one. Ra
ij instead is meant to be the probability

of check zi being satisfied if ξj is equal to a.

Analogously, let Sa
kl be the probability that the symbol l is a given the

information obtained by the channel nodes other than the k-th. Further, T a
kl

is the probability of channel node ǫk being satisfied if symbol l is considered

fixed at a. Figure 3.2 show these quantities on the tripartite graph. Finally

let X [τ ] be the value of X at the τ -th iteration of the iterative algorithm.

The joint MP algorithm works as follows.

Initialization

The channel inputs are i.i.d., so all state transitions are initially equally likely

[65]. The a priori probabilities are then initialized as:

fa
j = P (ξj = a) =

1

q
(3.7)

for ∀j = 1, . . . , N .
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Updating Sa
ij

For every iteration of the MP algorithm, the messages Sa
ij that symbol j sends

to channel node i should be the belief the parent has that it is in state a,

according to all other children. Therefore, Sa
ij[τ ] can be expressed as:

Sa
ij[τ ] = fa

j

∏

k∈L(j)\i

T a
kj[τ − 1]

∏

l∈M(j)

Ra
lj [τ − 1] (3.8)

Updating Qa
ij

The messages Qa
ij that symbol node j sends to the parity-check node i should

be the belief the parent has that it is in state a, according to all other children.

Thus, Qa
ij at the τ -th iteration is updated as follows:

Qa
ij [τ ] = fa

j

∏

k∈L(j)

T a
kj[τ − 1]

∏

l∈M(j)\i

Ra
lj [τ − 1] (3.9)

Updating T a
ij

The message that channel node i sends to symbol node j should be the proba-

bility of channel node i being satisfied if ξj was in state a. Thus, it is necessary

to sum over all the configurations ξ for which the channel constraint is sat-

isfied and the j-th symbol is in state a and add up the probability of the

configuration, as follows:

T a
ij[τ ] =

P (ξj = a|{rµ}µ∈I(i), {ξµ}µ∈I(i))
P (rj|ξj = a) · P (ξj = a)

=
∑

ξ:ξj=a

P (ǫi|ξ)
∏

k∈I(i)\j

Sξk
ik [τ − 1] (3.10)

The probability P (ǫi|ξ) of the channel constraint being satisfied is either 0
or 1 for any given configuration ξ.
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The way the value of T a
ij has to be computed depends on the considered

detection scheme. Specifically, when a SB detector is employed, the computa-

tion of T a
ij is based on (3.2) and (3.3). In other terms, T

a
ij can be expressed as

follows:

T a
ij [τ ] ∼

∑

{ζL,ζR:ζL
ξj=a−−−→ζR}

α̃j−1(ζL) · γa(j−1,j) · β̃j(ζR) (3.11)

The value of α̃ and β̃ can be calculated as follows:

α̃j−1(ζL) =

|ΘL|∑

t=1

αj−1(ζL) ·
∏

k∈I(j−1)\j

S
θLt
(j−1)k[τ − 1]

β̃j(ζR) =

|ΘR|∑

t=1

βj(ζR) ·
∏

k∈I(j+1)\j

S
θRt
(j+1)k[τ − 1] (3.12)

θLκ and θRκ represent the possible configurations of the input that lead to

the states ζL and ζR respectively. On the other hand, α and β represent the

forward state metric and the backward state metric respectively, as previously

mentioned in subsection 3.1.1.

ζL and ζR are linked convoluting the binary representation of the q-ary

symbol ξj that has been set to a and the given channel response. Each θ
L
κ ∈

ΘL = {θLκ}κ=1,...,|ΘL| and each θ
R
κ ∈ ΘR = {θRκ }κ=1,...,|ΘR| can be constituted by

one or more symbols, depending on the length ν of the channel memory.

It is easy to notice that the S contributions related to α̃ represent the

causal part of the ISI effect, while the S contributions related to β̃ represent

the anti-causal part of it.

Since the channel constraints for a given PR channel are well defined, it is

natural to ask if a more efficient way to compute the probability expressed in

(3.10) could exist.

Specifically, the edges between channel nodes and the variable nodes in
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the tripartite graph can be represented by a square adjacency matrix, Λ =

{Λij}i,j=1,...,N . If Λij is not set to zero, an edge in the tripartite graph between

the i-th channel node and the j-th variable node has to be drawn. Therefore,

the variable node j belongs to the set NΛ(i), where NΛ(i) = {j : Λij 6= 0}.
The expression of the adjacency matrix Λ depends on the length ν of the

channel memory and on the alphabet size q of the code. E.g., the adjacency

matrix for a 16-ary LDPC coded transmission over the EPR4 channel (that is,

ν = 3) is as follows:

Λ =




1 1 0 0 0 . . . 0

0 1 1 0 0 . . . 0

0 0 1 1 0 . . . 0
...

. . .
. . .

...

0 0 . . . . . . 0 1 1




(3.13)

Each element of Λ has its own binary representation depending on the

channel response h(D) and the alphabet size q. Specifically, the binary repre-

sentation Λb
ij of Λij is a square p x p matrix, where p = log2 q.

E.g., since the EPR4 channel response is hEPR4(D) = 1 + D − D2 − D3,

each Λb
ij related to the matrix in (3.13) can be written as follows ∀i = 1, . . . , N :

Λb
ii =




1 1 −1 −1
0 1 1 −1
0 0 1 1

0 0 0 1




(3.14)

Λb
i(i+1) =




0 0 0 0

−1 0 0 0

−1 −1 0 0

1 −1 −1 0




(3.15)

T a
ij can be efficiently calculated by treating the partial sums of a parity
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check as the states in a Markov chain [4], therefore T a
ij can be written as

follows:

T a
ij[τ ] =

∑

{ζL,ζR:ζL
ξj=a

−−−→ζR}

P (F T
i(j−1) ⇒ ζL) · P (B

T
i(j+1) ⇒ ζR) (3.16)

In order to better exploit the definition of F T and BT , let ϕv
u(X) be the

law that transforms X (living in GF (u)) in its v-ary counterpart. Thus, the

terms denoted by F T and BT are defined as follows:

F T
κk = ϕq

2(
∑

j:j≤k Λ
b
κj · ϕ

2
q(ξj))

BT
κk = ϕq

2(
∑

j:j≥kΛ
b
κj · ϕ

2
q(ξj))

(3.17)

The corresponding probabilities are computed as:

P (F T
κj ⇒ a) =

∑

{s,t:s
Λϕ
−→a}

P (F T
κi ⇒ s) · St

κj[τ − 1] (3.18)

P (BT
κj ⇒ a) =

∑

{s,t:s
Λϕ
←−a}

P (BT
κi ⇒ s) · St

κj[τ − 1] (3.19)

Λϕ is set to ϕq
2(Λκj · ϕ

2
q(t)). That is, s and t have to be chosen such that

the convolution of those values and the channel response leads the system to

the state a. i, j are successive indexes living in NΛ(κ), with j > i for the F T

contribution, while j < i for the BT part.

Updating Ra
ij

The message that check node i sends to symbol node j should be the probability

of check node i being satisfied if ξj was in state a. As in step 3.1.2, using the

laws of probability Ra
ij can be expressed as:
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Ra
ij [τ ] = P (zi|ξj = a)

=
∑

ξ:ξj=a

P (zi|ξ) · P (ξ|ξj = a) (3.20)

=
∑

ξ:ξj=a

P (zi|ξ) ·
∏

κ∈N(i)\j

Qξκ
iκ [τ − 1]

The probability P (zi|ξ) of the check being satisfied is either 0 or 1 for any

given configuration ξ as in the previous step. Ra
ij can be efficiently calculated

by treating the partial sums of a parity check as the states in a Markov chain [4],

therefore Ra
ij can be written as follows:

Ra
ij [τ ] =

∑

{s,t:s+t+Hija=0}

P (FR
i(j−1) = s) · P (BR

i(j+1) = t) (3.21)

The terms denoted by FR and BR are defined as:

FR
κk =

∑
j:j≤kHκj · ξj

BR
κk =

∑
j:j≥kHκj · ξj

(3.22)

The corresponding probabilities are computed as:

P (FR
κj = a) =

∑
{s,t:Hκjt+s=a} P (F

R
κi = s) ·Qt

κj [τ − 1]

P (BR
κj = a) =

∑
{s,t:Hκjt+s=a} P (B

R
κi = s) ·Qt

κj [τ − 1]
(3.23)

where i, j are successive indexes living in N(κ), with j > i for the FR

contribution, while j < i for the BR part.

Tentative decoding

A tentative decoding codeword ξ̂ be derived using the following expression:

ξ̂j = argmax
a
fa
j

∏

k∈L(j)

T a
kj[τ ]

∏

l∈M(j)

Ra
lj [τ ] (3.24)
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If ξ̂ =
[
ξ̂j

]
j=1,...,N

satisfies (3.1), then the decoding process is stopped,

declaring a success, otherwise the algorithm iterates from step 3.1.2. A failure

is declared if the codeword is not found after reaching a fixed maximum number

of iterations.

Computational complexity

In this subsection the computational complexity of each aforesaid receiver ar-

chitecture is discussed.

The number of operations required from each system is given by the com-

plexity of the used couple of detector and decoder. Table 3.1 shows the com-

putational complexity of each receiver for a length-N codeword of a LDPC

code over GF (q). Specifically, p = log2 q and ν represents the length of the

memory of the considered ISI channel.

Since a classic “flooding” decoding scheme [3] has been taken into account,

the computational complexity of a q-ary LDPC decoder is O(Ntq2), as already

stated in this section; t is the average column weight. It is proper to point out

that there exist specific decoding schemes, such as those based on layered belief

propagation (LBP) algorithm [57], that can lower the aforesaid computational

cost.

However, the overall complexity of a given receiver depends on the number

of operations required by the detector and the decoder separately and on the

way detector and decoder are linked in the architecture that is taken into

account.

The systems employing a SB detector typically show lower computational

complexities with respect to the correspondent architecture employing a BB

detecting scheme. In order to better exploit this point, it is proper to take into

account a trellis of p stages, that correspond to an input sequence of p bits. In

these conditions, the number of paths that have to be set while employing a BB

detector is p · 2ν+1. On the other hand, a SB detector in the same conditions
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needs only
∑p−1

i=0 2
χ(ν−i) patterns to work, where χ(t) = t if t ≥ 0, χ(t) = 0

otherwise. Therefore, the bit-based detecting scheme requires a larger number

of operations to work than the symbol-based detecting scheme.

The serially concatenated architecture requires a number of operations that

is simply the sum of those needed by the q-ary LDPC decoder and the employed

detector.

On the other hand, the turbo concatenated architecture shows a compu-

tational complexity that is proportional to NTI , that is the number of itera-

tions between detector and decoder. Therefore, the architecture introduced in

subsection 3.1.2 show a computational complexity NTI times lower than that

related to the TCA.

Finally, the architecture introduced in 3.1.2 requires a number of operations

that is related to the sum of those necessary for the detection and decoding

steps. Specifically, the computational complexity of the joint MP based scheme

depends on the convergence speed of the system. That is, the number of op-

erations required by the architecture decreases as the detection-and-decoding

scheme finds a codeword within the maximum number of iterations of the MP

algorithm.

In other terms, for a given detection scheme and a given q-ary decoder,

joint MP based architecture shows a computational complexity that is typically

lower than that of TCA and higher than that required by a SCA system.

3.1.3 Simulation results

In this section, simulation results obtained by implementing the three struc-

tures introduced in the previous section are discussed.

In each of these implementations, a 16-ary LDPC code with coding rate

R = 1 − M
N
equal to 8/9 is used. The codeword blocklength is set to 1152

symbols (that is 4608 bits) and the average column weight is set to 2.88. The

variable-node degree distribution, following the notation introduced in [21]
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Table 3.1: Computational complexity of the proposed architectures

Receiver architecture Computational complexity

SCA w/ BB det Np2ν+1+p +O(Ntq2)

TCA w/ BB det [Np2ν+1+p +O(Ntq2)] ·NTI

BB Joint MP based O(Np2ν+1+p +Ntq2)

SCA w/ SB det N((p + 2)2ν + 2ν − 1) +O(Ntq2)

TCA w/ SB det [N((p+ 2)2ν + 2ν − 1) +O(Ntq2)] ·NTI

SB Joint MP based O(N((p+ 2)2ν + 2ν − 1) +Ntq2)

and [22], was λ2 = 0.112 and λ3 = 0.8889, where λ(x) =
∑dv

i=2 λix
i−1, and

dv is the maximum symbol-node degree. The q-ary LDPC code has been

constructed using quasi-regular PC matrices [22] generated by a modified PEG

algorithm [18] that maximizes the minimum space distance [48], [38]. The

maximum number of iterations for the q-ary LDPC decoder of subsections

3.1.2 and 3.1.2 and for the message-passing algorithm of subsection 3.1.2 has

been set to 25. Moreover, the maximum number of iterations between the

detector and the q-ary LDPC decoder for the architecture of subsection 3.1.2

has been set to 10.

Three different PR channels having different memory length ν are consid-

ered. Each channel response h(D) is expressed as follows:

hPR4(D) = 1 +D2

hEPR4(D) = 1 +D −D2 −D3

hEEPR4(D) = 1 + 2D − 2D3 −D4

(3.25)

Figures 3.3, 3.4 and 3.5 show the simulation results, as Figures 3.7, 3.8

and 3.9 as well. The serially concatenated architecture is plotted in blue line,

the turbo concatenated architecture in red line and the joint MP based archi-

tecture in black line. Moreover, the results of the architectures employing a
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Figure 3.3: Bit Error Rate performance of the architectures discussed in Section 3.1.2 on the

EPR4 channel: serially concatenated architecture (SCA), turbo concatenated architecture

(TCA), joint MP based architecture. SCA and TCA employ bit-based (BB) and symbol-

based (SB) detectors and q-ary LDPC decoder. Joint MP based architecture employs a BB

BCJR algorithm or a SB BCJR algorithm to operate on the channel constraints.

bit-based detector are plotted in dashed line, while the results of the architec-

tures employing a symbol-based detector are plotted in solid line.

The systems employing a symbol-based detector largely outperform the

architectures employing a bit-based detector. A reason for this might be that

it is possible to include invalid trellis paths in the calculation by using the

bit-based detection approach [58]. Thus, the SCA employing BB detection

shows better error-rate performance than TCA employing BB detection, since

BB-TCA iterates the aforesaid information between detector and decoder.

Specifically, the minimum gain of the systems employing a SB detector

goes from about 0.3 dB to about 0.75 dB in terms of SNR, depending on the

PR channel that is taken into account. This behaviour highlights how the rate
p

ν+1
plays an important role in the error-rate performance of the described

architectures.

Further, the ratio p
ν+1

influences the error-rate performance of the joint MP
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Figure 3.4: Bit Error Rate performance of the architectures discussed in Section 3.1.2 on

the PR4 channel: serially concatenated architecture (SCA), turbo concatenated architecture

(TCA), joint MP based architecture. SCA and TCA employ bit-based (BB) and symbol-

based (SB) detectors and q-ary LDPC decoder. Joint MP based architecture employs a BB

BCJR algorithm or a SB BCJR algorithm to operate on the channel constraints.
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Figure 3.5: Bit Error Rate performance of the architectures discussed in Section 3.1.2 on the

EEPR4 channel: serially concatenated architecture (SCA), turbo concatenated architecture

(TCA), joint MP based architecture. SCA and TCA employ bit-based (BB) and symbol-

based (SB) detectors and q-ary LDPC decoder. Joint MP based architecture employs a BB

BCJR algorithm or a SB BCJR algorithm to operate on the channel constraints.
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Figure 3.6: Gain of the TCA employing SB detector on the other architectures proposed

in Section 3.1.2 for the PR channels taken into account. The gain is computed in terms of

SNR at BER =10−5; p = log
2
q and ν is the memory length of the given PR channel.
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Figure 3.7: Frame Error Rate performance of the architectures discussed in Section 3.1.2

on the EPR4 channel: serially concatenated architecture (SCA), turbo concatenated archi-

tecture (TCA), joint MP based architecture. SCA and TCA employ bit-based (BB) and

symbol-based (SB) detectors and q-ary LDPC decoder. Joint MP based architecture employs

a BB BCJR algorithm or a SB BCJR algorithm to operate on the channel constraints.
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Figure 3.8: Frame Error Rate performance of the architectures discussed in Section 3.1.2 on

the PR4 channel: serially concatenated architecture (SCA), turbo concatenated architecture

(TCA), joint MP based architecture. SCA and TCA employ bit-based (BB) and symbol-

based (SB) detectors and q-ary LDPC decoder. Joint MP based architecture employs a BB

BCJR algorithm or a SB BCJR algorithm to operate on the channel constraints.
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Figure 3.9: Frame Error Rate performance of the architectures discussed in Section 3.1.2

on the EEPR4 channel: serially concatenated architecture (SCA), turbo concatenated ar-

chitecture (TCA), joint MP based architecture. SCA and TCA employ bit-based (BB) and

symbol-based (SB) detectors and q-ary LDPC decoder. Joint MP based architecture employs

a BB BCJR algorithm or a SB BCJR algorithm to operate on the channel constraints.
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based architecture. In fact, the joint MP based architecture employing a BB

detection outperforms both BB-TCA and BB-SCA. For the BER curves, the

gain is really tiny on PR4 and EEPR4 channels, where p
ν+1

6= 1.

Moreover, TCA employing SB detection outperforms SB-SCA and SB joint

MP based architecture as well. This result furthermore highlights the influence

of the computation of the soft input to the q-ary LDPC decoder on the extrinsic

information required in the turbo architecture.

Figures 3.7, 3.8 and 3.9 globally confirm the aforesaid observations. The

frame-error rate curves of the architectures employing a Bit Based detection

scheme show how the gain of joint MP based architecture on the other receivers

in terms of SNR is larger than that observed for each PR channel in Figures

3.3, 3.4 and 3.5. Moreover, SB-TCA shows the best FER performance. The

SB joint MP based architecture outperforms the FER performance of SB-SCA

on every PR channel but the EEPR4 channel.

Further, Figure 3.6 shows the gain of the SB-TCA with respect to the other

proposed architectures in terms of SNR as a function of the ratio p
ν+1

. The

gain is calculated as the given bit-error rate curve passes the threshold of 10−5

in Figure 3.3 (i.e., p
ν+1

= 1), Figure 3.4 (i.e., p
ν+1

= 1.333) and Figure 3.5 (i.e.,
p

ν+1
= 0.8).

Specifically, the gain of SB-TCA on the architectures employing a BB de-

tection scheme is greater than 0.8 dB at least. Further, the gain is maximum

on every other BB receiver for p
ν+1

= 1.

On the other hand, it looks like the more p
ν+1

gets larger, the more SB-

TCA outperforms symbol-based joint MP based architecture. Specifically, the

minimum gain of SB-TCA on SB joint MP based architecture is achieved on

the PR4 channel and it is about 0.25 dB.

Finally, a very interesting task is addressed by the behaviour of SB-SCA

with respect to SB-TCA. In fact, SB-TCA gains about 0.6 dB on SB-SCA for

each PR channel that has been taken into account. This is a result that might

require a deeper investigation.
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3.1.4 Conclusions

Three receiver architectures employing q-ary LDPC codes have been intro-

duced and analyzed in order to study their bit-error-rate performance over

some PR channels.

Simulation results for 16-ary LDPC code over three different partial re-

sponse channels showed that the best performance can be achieved by using

a turbo concatenated architecture whose detection is symbol-based. Conse-

quently, using such an architecture appears to have the best performance in

an environment affected by ISI where good error-correction capability is desir-

able. Moreover, it has been observed that in general a symbol-based detection

provides better performance with respect to a bit-based detection.

Ongoing research that promises efficiency at the receiver includes the analy-

sis of different structures as a joint MP based architecture employing a symbol-

based BCJR algorithm operating on the channel constraints. Future directions

for research could focus on the behavior of the proposed architectures over dif-

ferent channels (like the magnetic recording channel) and with different LDPC

codes, having different codeword length or degree-distribution profile as in [35].

Moreover, in order to complete the analysis on the efficient receivers over

PR channels, a study of the influence of the ratio p
ν+1

have to be performed.

Further, an investigation on the better detection method to be used has to be

addressed, as a study on the improvements provided by other decoders (such

as those based on LBP algorithms [57]) as well. Finally,an optimization of the

construction of q-ary LDPC codes have to be taken into account, starting from

the results provided in [26] and [28].
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Chapter 4

Applications of q-ary codes

Recently rate-compatible (RC) LDPC codes have been used to achieve per-

formance close to the channel capacity for different applications that require

rate adaptivity. In Section 4.1 the joint q-ary LDPC decoding of correlated

sources is considered, exploiting the differences of symbol puncturing patterns

at the encoders. Despite the proposed algorithm simplicity, comparison with

the independent decoding of such sequences, using both punctured and non-

punctured codes, shows substantial coding gains. Future directions for research

and possible applications are finally discussed.

Phase Change Memory definitely represents one of the most promising tech-

nologies among the non-volatile memories to be used in the next decade. Even

though the noise resilience of PCMs looks to be very strong, an information

theory-based design may improve the error-rate performance of the PCM read-

ing process. In Section 4.2, a channel model for the information recovery in

PCMs is introduced and discuss the related mutual information. Experimen-

tal results are provided in order to highlight relationships between information

recovery performance, electrical parameters of the memory cell, and the sensi-

tivity of the reading architecture. This information theory-based point of view

represents a base for an effective optimization of the error-rate performance

during the PCM reading process and opens the path to very interesting new

113
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research lines.

4.1 Exploiting Source Correlation to Improve

Performance of q-ary Rate Compatible LDPC

Codes

Recent technological improvements have allowed the employment of complex

structures in order to reach the maximum reliability in data communications.

The manifold ways information can be transmitted and received have deter-

mined the flourishing of many topologies in the communication architectures.

Several papers [71], [72] have highlighted how processing as much information

as possible could improve the overall performance of the systems. Specifically,

some approaches have been proposed to improve the robustness of transmis-

sions of coded correlated sources over noisy channels. In regards to this, see [73]

- [75] and references therein.

The main contribution of this section is related to the possibility of ex-

ploiting punctured q-ary codes for the joint coding and decoding processes of

correlated sources. The only two needed requirements are a joint coding algo-

rithm, based on different puncturing patterns, and a joint decoding algorithm

of the contemporaneous received correlated codewords.

Recent works reveal that LDPC codes may be efficiently applied to rate-

adaptive systems, by employing RC codes. Proper puncturing algorithms [76],

[77] and PC matrix construction methods [78], [18] have been proposed in

literature.

In this section RC-LDPC codes on a multiple source transmission are em-

ployed, paying particular attention to the correlation of the sources. Different

puncturing patterns are defined for the different correlated sources, starting

from the algorithms provided in [76], [77], and employing non-binary LDPC

codes. A novel decoding scheme exploiting the correlation among the sequences
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is also introduced and compared with an independent decoding strategy.

The section is organized as follows. Section 4.1.1 introduces the system

model for the architectures that are discussed in Section 4.1.2: the independent

stream decoding and the two versions of cross stream decoding. In Section

4.1.3 the simulation results are given, and the practical aspects of the system

implementing are discussed. Conclusions about future research development

conclude the section.

4.1.1 System Model

In this section, the performance of two different decoding architectures for

LDPC coded correlated sources are analyzed. These systems employ the in-

dependent stream decoding and the cross stream decoding. For each of these

architectures, the basic system model is shown in Figure 4.1.

Figure 4.1: Block diagram of the transmitting system. 2→ q operates the conversion from

a binary alphabet to a q-ary alphabet. q → 2 operates the conversion from a q-ary alphabet

to a binary alphabet. Pk operates puncturing on the k-th stream.
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The information source generates a sequence u of K symbols living in

GF (q): i.e., u = [ui]i=1,...,K , ui ∈ GF (q) ∀ i = 1, . . . , K. Each symbol is

p = log2 q bits long: q depends on the alphabet size of the LDPC code that

is meant to be used. The information message is then replicated NS times.

Each copy of the binary representation ub of u passes through NS blocks that

operate the sum in GF (2). The k-th copy of ub is meant to be summed to

the length-Kp sequence zk for k = 1, . . . , NS. The resulting sequence has the

following expression:

vbk = ub ⊕ zk (4.1)

where each zk is chosen accordingly to the value of the empirical cross-

correlation ρmn of the sequences that have been taken into account. For every

couple of streams ρmn is defined as ρmn = αmn

Kp
, where αmn represents the

number of places in which vbm and vbn agree, being m 6= n [73]. In this section

αmn = α for every m,n ∈ {1, . . . , NS}. Therefore, ρmn is set to a given value

ρ ∀ m,n ∈ {1, . . . , NS}, m 6= n as well. Thus, ρmn can be written for every

couple of vbs as follows:

ρmn =
αmn

Kp
=
K − C1(vbm ⊕ vbn)

Kp

=
K − C1(ub ⊕ zm ⊕ ub ⊕ zn)

Kp
(4.2)

=
K − C1(zm ⊕ zn)

Kp
= ρ

C1(X) represents the number of ones in the sequence X .

Each vbk has its own q-ary representation vk that is properly encoded.

Therefore, for each stream a length-N codeword xk = [xkj ]j=1,...,N , xkj ∈

GF (q = 2p) ∀ j = 1, . . . , N , ∀ k = 1, . . . , NS is generated such that

H(k)xTk = 0 (4.3)
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where H(k) = {Hij(k)}i=1,...,M,j=1,...,N , Hij(k) ∈ GF (q = 2p) is the Parity

Check matrix for the k-th stream. In this section each Parity Check matrix is

chosen such that H(k) = H ∀ k = 1, . . . , NS.

Further, H is chosen such that each xk is systematic, i.e., xk = [ck|vk].

ck = [cki]i=1,...,M , cki ∈ GF (q = 2p) ∀ i = 1, . . . ,M is the parity check part of

the codeword.

It is proper to remind that the empirical cross-correlation calculated on the

codewords ρCW
mn is typically lower than ρmn. Moreover, since the expression of

each ck k = 1, . . . , NS depends on the Parity Check matrix H , it is not easy

to infer on the codeword empirical cross-correlation such that ρCW
mn = ρCW

∀m,n ∈ {1, . . . , NS} m 6= n.

The binary representation of each xk represents the input to the block

Pk that operates the puncturing. Namely each Pk can be different for any

k ∈ {1, . . . , NS}: however, in this section Pk = P ∀ k ∈ {1, . . . , NS}. After

the puncturing operation, the NTX unpunctured bits of each stream are BPSK

modulated. NTX = (N −NPl
) ·p, where NPl

represents the number of symbols

that have to be punctured to achieve the transmission rate RPl
= K

NTX
. Finally,

additive white Gaussian noise is added to each bitstream.

At the receiver, theNS length-N bitstreams y
k
= [ykj ]j=1,...,N , k = 1, . . . , NS

are reconstructed: specifically, each punctured bit is replaced with a 0. The

received signal, properly demapped, is then sent to the decoding system.

The next subsection introduces the proposed decoding systems with the

related puncturing schemes.

4.1.2 Decoding architectures

In order to better exploit the decoding process of each architecture, let gκj (k)

be the probability that the j-th received bit of the k-th stream is κ. That is,

gκj (k) = P (yjk = 1− 2κ) with κ = {0, 1}, j = 1, . . . , N and k = 1, . . . , NS.

Since the channel model that has been taken into account is memoryless
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and a q-ary LDPC code is employed, the decoder input for the k-th bitstream

is fa
j (k) =

∏p
i=1 g

ai
ji
(k) ,k = 1, . . . , NS for each a ∈ GF (q), where ai is the i-th

bit of the binary representation of a and p = log2 q.

Independent stream decoding

When independent stream decoding (ISD) is performed, puncturing patterns

are derived by using the algorithms provided in [76] and [77]. Therefore, the

transmission rate RPl
that can be achieved after performing the puncturing

operation has the following expression:

RPl
=

R0

1−
NPl

·p

N ·p

=
K
N

N−NPl

N

(4.4)

=
K

N −NPl

R0 is the rate of the PC matrix of the employed LDPC code over GF (q =

2p). NPl
is the number of symbols that have to be punctured to achieve the

transmission rate RPl
. l ∈ {1, . . . , IH}, where IH is the maximum number of

iterations required to recover all punctured nodes [76]. Thus, the maximum

achievable transmission rate is Rmax = RPIH
= K

N−NPIH

.

The a priori probability for the j-th punctured bit in a given stream is set

to 1
2
. Decoding is then performed by using a proper MP algorithm [3], [4].

Cross stream decoding

When cross stream decoding (CSD) is performed, a modified puncturing scheme

is employed.

For a given transmission rate RCSD
Pl

the algorithm proposed in [76] is mod-

ified in order to look for a set of NCSD
l = NS ·NPl

symbols suitable for punc-
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turing. That is, the tree used to look for the best recoverable bits is extended

NS times deeper than what is described in [76].

Thus, NPl
bits are punctured for each bitstream such that a bit that is

punctured in a stream can not be punctured in the other NS − 1 streams.

Therefore, the transmission rate has the following expression:

RCSD
Pl

=
R0

1−
NCSD

l

NS
· 1
N

=
K
N

N−NCSD
l

/NS

N

(4.5)

=
K

N −
NCSD

l

NS

R0 is the rate of the PC matrix of the employed LDPC code over GF (q =

2p) and l ∈ {1, . . . , ICSD
H }. ICSD

H is the maximum number of iterations required

to recover all nodes that have been chosen to be punctured by using the modi-

fied puncturing algorithm. The maximum transmission rate RCSD
max is achieved

when l = ICSD
H , that is, in this case, when all the bits of the binary represen-

tation of the codeword are punctured through all the streams. Therefore, the

transmission rate obtained after puncturing is maximum if NCSD
l = N . I.e.,

RCSD
max can be written as follows:

RCSD
max =

K

N − N
NS

=
K

N · NS−1
NS

(4.6)

= R0 ·
NS

NS − 1
.

At the receiver, the likelihood of the j-th punctured bit in the k-th bit-

stream is set to
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gκj (k) =

∑
i∈{1,...,NS}\k

gkj (i)

NS − 1
(4.7)

where κ = {0, 1}, while j ∈ Sτ = {τ, τ + 1, . . . , N · p}. If τ = 1 the

system performs the first version of CSD, called CSD-I. On the other hand, if

τ = (M + 1) · p, the second version of CSD is used, called CSD-II.

CSD-I relies on the side information that can be recovered from the streams

other than that is meant to be decoded. CSD-II relies on the error correction

capability of the LDPC code. Specifically, CSD-I aims to use the statistical

smoothing of the 1s in each zk achieved operating the (4.7). On the other hand,

CSD-II takes advantage of the value of empirical cross-correlation calculated

on the information part of each codeword, since it is typically higher than that

calculated on the whole codeword.

Decoding is finally performed by using a proper MP algorithm [3], [4].

4.1.3 Simulation results

In this section, simulation results obtained by using a 4-ary LDPC code and

a 16-ary LDPC code with coding rate R0 = 1− M
N
equal to 1/2 are discussed.

The codeword blocklength is set to 4608 bits, that is 2304 symbols over GF (4)

and 1152 symbols over GF (16). The average column weight is set to 2.5. The

variable-node degree distribution is λ2 = λ3 = 0.5, where λ(x) =
∑dv

i=2 λix
i−1,

and dv is the maximum symbol-node degree.

The LDPC codes have been constructed using quasi-regular PC matrices

[23] generated by a modified PEG algorithm [18] that maximizes mSD [38].

The maximum number of iterations for the MP based decoders has been set

to 50.

Figures from 4.2 up to 4.5 show the simulation results for the 16-ary LDPC

coded architectures while Figures from 4.6 up to 4.9 show the simulation results

for the 4-ary LDPC coded ones. Puncturing is performed in order to obtain

transmission rates RP equal to 3/5 and 2/3. The empirical cross-correlation
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Figure 4.2: Bit Error Rate performance of the architectures discussed in Section 4.1.2: in-

dependent stream decoding (ISD) and cross stream decoding (CSD). RP is the transmission

rate, q is the alphabet size, ρ is the empirical cross-correlation introduced in Section 4.1.1,

NS is the number of streams that have been employed.

ρ, introduced in Section 4.1.1, is set to 0.97, that leads to an empirical cross-

correlation calculated on the codewords ρCW having a value about 73 %. Figure

4.14 shows the empirical cross correlation that has been calculated on the whole

codeword ρCW as a function of the empirical cross correlation that has been

calculated on the information part of the codeword only ρ. It is proper to

remind that the behavior of ρCW strictly depends on the PC matrix H that

has been chosen. However, Figure 4.14 shows how the value of the empirical

cross correlation actually decreases as it is calculated on the whole codeword.

In Figures from 4.10 up to 4.13, BER and FER simulated results, obtained
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Figure 4.3: Frame Error Rate performance of the architectures discussed in Section 4.1.2:

independent stream decoding (ISD) and cross stream decoding (CSD). RP is the transmis-

sion rate, q is the alphabet size, ρ is the empirical cross-correlation introduced in Section

4.1.1, NS is the number of streams that have been employed.

with different source correlations, are compared. The BER/FER curves rep-

resent the average vlaue of the NS stream decoding error-rates.

The architectures employing CSD-II outperform those using CSD-I espe-

cially for the 16-ary case, using 4 streams. Comparing the proposed encode-

and-decoding scheme with the punctured ISD, both CSD method provides

significant gains and the best reults have been obtained with CSD-II with

Ns = 4, where a significant gain, similar to those shown in [73]- [75], is reached

with respect to the independent decoding of the unpunctured mother-code.
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Figure 4.4: Bit Error Rate performance of the architectures discussed in Section 4.1.2: in-

dependent stream decoding (ISD) and cross stream decoding (CSD). RP is the transmission

rate, q is the alphabet size, ρ is the empirical cross-correlation introduced in Section 4.1.1,

NS is the number of streams that have been employed.

4.1.4 Conclusions

Two decoding structures employing RC-LDPC codes have been introduced and

analyzed in order to study their bit-error-rate performance on the transmission

of correlated sequences.

Simulation results for q-ary LDPC codes, with q = 4 and 16 show that the

best performance can be achieved by using an architecture whose decoding is

correlation based. Moreover, it has been observed that in general a 16-ary

LDPC coding provides better performance with respect to the 4-ary case.
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Figure 4.5: Frame Error Rate performance of the architectures discussed in Section 4.1.2:

independent stream decoding (ISD) and cross stream decoding (CSD). RP is the transmis-

sion rate, q is the alphabet size, ρ is the empirical cross-correlation introduced in Section

4.1.1, NS is the number of streams that have been employed.

These interesting results have been obtained with the same decoder com-

plexity of the standare MP decoding of non binary codes. This in an important

difference with respect to previous works [73] - [75], where a turbo scheme is

employed to exploiting the high mutual correlation of the received signals.

This is allowed by using the joint coding with different puncturing patterns.

Ongoing research that promises efficiency at the receiver includes the anal-

ysis of novel decoders in which the correlation influence is furthermore high-

lighted in the MP structure. Future directions for research could focus on

the behavior of the proposed architectures over different channels and with
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Figure 4.6: Bit Error Rate performance of the architectures discussed in Section 4.1.2: in-

dependent stream decoding (ISD) and cross stream decoding (CSD). RP is the transmission

rate, q is the alphabet size.

different LDPC codes, having different codeword length or degree-distribution

profile as in [35]. Further, an optimization of the construction of LDPC codes

has to be taken into account, starting from the results provided in [26].
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Figure 4.7: Frame Error Rate performance of the architectures discussed in Section 4.1.2: in-

dependent stream decoding (ISD) and cross stream decoding (CSD). RP is the transmission

rate, q is the alphabet size.

4.2 Challenges and opportunities for informa-

tion theory-based design of Phase Change

Memories

Technological improvements in VLSI circuits have allowed an ever increas-

ing capability in data processing, that is closely related to the need for fast

read/write storage devices. Thus, the development of non-volatile memories

(NVMs) is one of the most active and challenging fields for research in micro-

electronics. Phase-Change Memory represents one of the most promising non-
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Figure 4.8: Bit Error Rate performance of the architectures discussed in Section 4.1.2: in-

dependent stream decoding (ISD) and cross stream decoding (CSD). RP is the transmission

rate, q is the alphabet size.

volatile semiconductor storage technologies to be used in the next decade [79].

Specifically, the microelectronics community aims at employing the aforesaid

memories in order to replace standard floating-gate based Flash devices. In

fact, when compared to Flash memories, PCMs can improve the performance

in terms of endurance, write/read throughput, bit granularity, and scalability.

The PCM storage element is a thin chalcogenide layer contacted by a bot-

tom semi-metallic heater and a top metal layer [80]. This storage element

works as a variable resistor. Indeed, the used chalcogenide material shows

a low-field resistivity that changes by orders of magnitude depending on its

structural state (or, phase). Specifically, fast electrical pulses can change the
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Figure 4.9: Frame Error Rate performance of the architectures discussed in Section 4.1.2: in-

dependent stream decoding (ISD) and cross stream decoding (CSD). RP is the transmission

rate, q is the alphabet size.

phase of a small portion of the chalocogenide layer (referred to as the active

volume) between a low-conductance (that is, amorphous) state and a high-

conductance (that is, crystalline) state. A complete study of PCM feasibility

assessment has to take into account several items, such as:

• integration with CMOS technology;

• reduction of power consumption;

• scaling perspectives;

• reliability;
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Figure 4.10: Bit Error Rate performance of the architectures discussed in Section 4.1.2: in-

dependent stream decoding (ISD) and cross stream decoding (CSD). RP is the transmission

rate, q is the alphabet size.

• disturbance characteristics.

The last item is definitely the most relevant and interesting from an in-

formation theory point of view. In fact, although PCMs apparently have an

extremely strong noise resilience, information theory can still help improving

and optimizing their performance. The quality of the interface between the

heater and the chalcogenide layer and the robustness to spurious voltage tran-

sients are basic parameters to prove the manufacturability and the reliability

of the memory cell. Analyzing PCMs from an information theory point of view

may help in this respect.
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Figure 4.11: Bit Error Rate performance of the architectures discussed in Section 4.1.2: in-

dependent stream decoding (ISD) and cross stream decoding (CSD). RP is the transmission

rate, q is the alphabet size.

The nature of disturbances affecting PCMs may be described by means of

several parameters. Among these, the following ones play a key role in the

PCM capability of storing information:

• the variability of the cell geometry and the chemical composition of the

phase change material;

• the non-deterministic programming behavior, or “write noise”;

• the noisiness of electrical parameters.
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Figure 4.12: Bit Error Rate performance of the architectures discussed in Section 4.1.2: in-

dependent stream decoding (ISD) and cross stream decoding (CSD). RP is the transmission

rate, q is the alphabet size.

The last two points have been recently addressed in the literature. Specif-

ically, one paper [81] investigates the relationship between programming al-

gorithms and the amount of information that can be stored, in average, in a

rewritable memory cell. Another work [82] studies the noisiness of electrical

parameters in order to explain how the geometrical distribution of the amor-

phous material in the active chalcogenide volume affects the capability of a

cell to store data.

Moreover, an information-theoretic analysis is useful as it can point out

several aspects of the system, such as:
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Figure 4.13: Bit Error Rate performance of the architectures discussed in Section 4.1.2: in-

dependent stream decoding (ISD) and cross stream decoding (CSD). RP is the transmission

rate, q is the alphabet size.

• definition of the channel;

• computation of the channel capacity;

• evaluation of the improvements brought by the application of error cor-

recting codes (ECCs);

• optimization of the choices made within a modern coding theory ap-

proach (type of ECC, coding rate, alphabet size, etc.);

• proper design of the control system of the read/write interface;

• evaluation of the scalability potential.
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Figure 4.14: computed codeword correlation versus the information part correlation.

This section aims at providing the first results in this direction and describ-

ing challenges and opportunities for the design of the PCM cell and the reading

architecture by means of an information theory-based approach. In particu-

lar, it deals with the fundamental parameters of the PCM physics, which are

related to the noise mechanisms within the memory array, and with the data

acquisition architecture which also contributes to the overall system noise.

First of all, it is important to determine an adequate channel model in

order to analyze the system. The channel model that apparently well fits the

PCM information acquisition is a generalized binary erasure channel (gBEC).

Therefore, the expression of mutual information for a gBEC is provided in Sec-

tion 4.2.1. Knowing this quantity is fundamental for an effective information
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theory-based PCM design. In fact, the definition of the relationships among

the parameters affecting the mutual information is necessary to draw the di-

rectives for optimizing the PCM reading process performance. Experimental

results in Section 4.2.2 provide a validation of the proposed channel model

and give a major overview of the system, highlighting the key points for an

information theory-based optimization. Further, these results provide a base

on which a framework aiming at optimizing the design of the PCM array and

providing a deeper investigation of the system can be stated. Final remarks

conclude the section.

4.2.1 System model

In this section, it is assumed that the reading process is performed by sensing

the value of the current through the selected cell (and, hence, through the

selected bit line), which depends on the phase of the active chalcogenide volume

[80].

Let IR be the value of the current acquired in the reading process and IP

be the corresponding value in the case of an ideal PCM system. In the case of

noiseless reading, let a stored bit 1 be represented by a high value of IP , that

is, IP = IH , and a stored bit 0 be represented by a low value of IP , that is,

IP = IL.

The reading process of a single cell in a Phase Change Memory can be

schematically described as consisting of three different steps (Figure 4.15) [83,

84].

• In the first step (time duration TP ), a predetermined read voltage Vrd

is applied to the addressed bit line and, hence, to the selected i-th cell.

The bit line current increases from its initial value (0) towards the value

Vrd/Rcell, where Rcell is the cell resistance. In addition, the sense circuit

is equalized and preset to its optimal bias conditions.

• The read current is left free to settle for a predetermined time interval and
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is then acquired by the sensing circuit (total time duration TT ). Thus,

the value of current IR is detected after a time TP + TT . The content of

the selected cell is determined by comparing IR with a threshold current

Ith, which is usually chosen as the mean of the nominal values associated

to state 1 (IH) and state 0 (IL), that is, Ith = (IH + IL)/2.

• The reading current is finally set back to 0 and the sense circuit is dis-

abled in a time TB. After that, the reading process can restart for the

next ((i+1)-th) cell. Therefore, the reading process of the i-th cell takes

a time TRi
= TR = TP + TT + TB.

Figure 4.15: Schematic waveform for the reading process of Phase Change Memories.

Given the previous description of the PCM reading process that has been

considered in this section, the PCM readout signal is not affected by resis-

tance drift [85] or intersymbol interference. Therefore, the related channel

model has to be memoryless. However, it is necessary to properly define the

signal-to-noise ratio in terms of physical parameters that can affect the output

waveform. It is worth to highlight that the definition of SNR for PCMs is a

really challenging topic for the data storage community. To the best of the

author’s knowledge, there is no paper dealing with this task. In this section,

the goal is not to find the expression of SNR but rather to define a simplified

channel model for PCMs, in order to give the first directives for an effective
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information theory-based design of the PCM reading architecture. It is pos-

sible to define a channel model by taking the non idealities of the reading

process into account. Specifically, the output of the reading process expressed

in terms of bits, y(t), could be more manageable from an information theory

point of view by introducing an uncertainty zone in the acquired current value.

Let IRi
be the acquired current when reading the i-th cell. In the case when

a hard decision is performed, the i-th sample, yi, of the readout signal y(t)

corresponding to the stored data can be written as follows:

yi =





1 if IRi
≥ Ith +∆I

ǫ if Ith −∆I < IRi
< Ith +∆I

0 if IRi
≤ Ith −∆I

(4.8)

where ǫ represents the state of uncertainty: if the output is in the ǫ state,

the reading system can not safely choose which value to assign to that given

sample yi. If the reading process is noiseless, ∆I is set to 0. Thus, 2∆I can

be considered as the width of the uncertainty state, or, in other terms, as the

sensitivity of the reading architecture.

Given the aforesaid assumptions, the readout signal expressed in (4.8) can

be associated to a generalized binary erasure channel. gBECs have been stud-

ied especially for the decoding analysis of LDPC codes [23]. Let X be the

input alphabet and Y be the output alphabet. In this case, X = {0, 1} and

Y = {0, ǫ, 1}. Moreover, given x ∈ X , let p0 = p(x = 0) and p1 = p(x = 1),

p0 = 1 − p1, be the input probabilities. The transition probability matrix

Q = {qij}i=0,...,|Y |−1;j=0,...,|X|−1 associated to the gBEC can be written as fol-

lows:

Q =




1− φ0 g1

f0 f1

g0 1− φ1


 (4.9)

Each term qij represents the probability that the given readout symbol is
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yi ∈ Y , while the stored data is xj ∈ X : that is, qij = p(y = yi|x = xj). In

other terms, since the stored data live in GF (2), p(y = i|x = i) = 1 − φi,

p(y = i|x = j) = gj, p(y = ǫ|x = i) = fi ∀i, j ∈ {0, 1}, i 6= j. φi is set to fi+ gi

∀i ∈ {0, 1}.
Thus, the mutual information I(X ; Y ) [24] of the gBEC is the following:

I(X ; Y ) = H(X)−H(X|Y ) =

= H2(p0)−
∑

(i,j)∈{0,1}2,i 6=j

pi[(1− φi) log2(1 +
pjgj

pi(1− φi)
)+ (4.10)

+gi log2(1 +
pj(1− φj)

pigi
) + fi log2(1 +

pjfj
pifi

)]

where H2(z) = −[z log2(z) + (1− z) log2(1− z)].

The influence of the transition probabilities is therefore very strong on

the gBEC capacity. Even when each fi and each gi assume small (non zero)

values, the maximum fraction of information that can be reliably recovered

can be much degraded. Specifically, (4.10) shows that the mutual information

decreases faster with increasing g than with increasing f .

Furthermore, in the case when the channel is symmetric, i.e. f0 = f1 = f ,

g0 = g1 = g and φ0 = φ1 = φ, the mutual information expressed in (4.10) is

maximized when p0 = p1 =
1
2
. In that case, the channel capacity C can be

written as follows:

C = 1− [(1− φ) log2(1 +
g

1− φ
) + g log2(1 +

1− φ

g
) + f ] (4.11)

Figure 4.16 shows C as a function of f and g. Specifically, in case g = 0,

i.e. the channel becomes a standard binary erasure channel, C = 1 − f . On

the other hand, if f = 0, the channel becomes a binary symmetric channel,

that is C = 1−H2(g). Further, C = 0 if g = 1
2
(1− f).
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4.2.2 Experimental results

In this Section, the results described in Section 4.2.1 are used to analyze an

experimental PCM cell array.

In particular, the read current tracks presented in this Section were ob-

tained from a PCM test chip integrated in 180-nm CMOS technology [80].

The simplified read path is shown in Figure 4.17. NMOS transistor YO is

characterized by its threshold voltage, Vth, and its transconductance param-

eter β, which takes its sizes as well as its electrical properties into account.

Specifically, as β ↓ 0, the area of YO gets smaller, modeling the scaling process.

During a read operation, YO works in its saturation region, where the follow-

ing relationship between its drain current ID and its gate-to-source voltage

VGS = VG − VS (VG and VS being its gate and source voltage, respectively)

holds [25]

ID =
β

2
(VG − VS − Vth)

2 (4.12)

Transistor YO then operates as a source follower, thereby determining the
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Figure 4.17: Simplified read path for the considered PCM chip. The bit-line select devices

are assumed to have a negligible on-resistance and are not shown in the figure for simplicity.

NMOS transistor Msel is the word-line select device, and also has a negligible on-resistance.

NMOS transistor YO works as a source follower, thus determining the voltage across the

selected cell. IR is the readout current.

voltage across the selected cell as

Vrd = VG − Vth −
√
2IR
β

(4.13)

When the PCM cell has to be read, the value of the voltage on the gate of YO

is set to an adequate value VG, and the ensuing read current IR = Vrd/Rcell is

then acquired by the sense circuit.

In the following discussion, the readout signals are analyzed according to

the observations provided in Section 4.2.1.

The parameters required to represent the PCM channel as a gBEC may
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be obtained by a long enough sequence of readings in a PCM cell array. The

values of fi and gi in (4.10) can be calculated as:

f0 =
∫ Ith+∆I

Ith−∆I
p(IR = I ′|IP = IL)dI

′

f1 =
∫ Ith−∆I

Ith+∆I
p(IR = I ′|IP = IH)dI

′

g0 =
∫ +∞

Ith+∆I
p(IR = I ′|IP = IL)dI

′

g1 =
∫ Ith−∆I

−∞
p(IR = I ′|IP = IH)dI

′

(4.14)

It is worth to remind that the minimum value of ∆I is 0, whereas its

maximum value is IH − Ith = Ith − IL = IH−IL
2

. Moreover, it is important

to note that the channel symmetry condition does not hold for any value of

∆I so far. In fact, from Figure 3, the variance of the set readout track is

much higher than that of the reset readout track. Therefore, the values of f0
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Figure 4.19: Contour plot of the mutual information as a function of the bit-0 input proba-

bility, p0, and the normalized half-width of the uncertainty state, ∆I .

and g0 are usually largely different from the values of f1 and g1, respectively.

Thus, depending on the value of the half-width, ∆I , of the uncertainty state,

the expression of the transition matrix in (4.9) may vary. Depending on the

form of the transition matrix, the expression of the mutual information will

vary according to the value of ∆I as well. The mutual information in (4.10) is

a function of the input probability profile and, hence, from (4.12) and (4.14),

assumes different values for each pair (∆I , β) depending on the values of p0 and

p1. Moreover, as ∆I and β vary, the maximum value of the achievable mutual

information can be approached by adequately modifying the input probability

profile.

The mutual information behavior can give useful directives for a perfor-

mance optimization of PCM technology. For instance, it can provide informa-

tion on the width 2∆I that can be tolerated to achieve an acceptable error rate.

Since the values of IH and IL depend on the gate-to-source voltage of source

follower device YO, the value of β strongly affects the fraction of information
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that can be reliably recovered.

As β increases, the PCM technology noise resilience gets stronger. This

property is highlighted in Figure 3, where samples of set and reset readout

tracks of a PCM array having a value of β large enough are shown. The reset

track is plotted in red color, while the set track is plotted in blue color. It is

worth to remind that a cell programmed to the reset state (hereinafter referred

to as reset-programmed cell) corresponds to a stored bit equal to 0, while a

cell programmed to the set state (hereinafter referred to as set-programmed

cell) corresponds to a stored bit equal to 1. That is, according to the notation

introduced in Section II, IP = IL for a reset-programmed cell, while IP = IH

for a set-programmed cell. Figure 4 shows the contour plot of the mutual

information as a function of the normalized half-width of the uncertainty state,

∆I , and the bit-0 input probability, p0.

Figure 5 shows the pair (∆I , p0) for which the maximum mutual informa-

tion is reached. The aforesaid figures further highlight the noise resilience of

Phase Change Memories.

However, the value of the readout current IR depends on the parameters of

YO that drives the selected bit line. In fact, from (4.12), after simple algebraic

manipulations, the value of the readout current, IP , in the case of a noiseless

system can be expressed as follows:

IP (β,Rχ) =
VG − Vth
Rχ

+
1

βR2
χ

(1−
√
1 + 2βRχ(VG − Vth)) (4.15)

where Rχ, χ ∈ {set, reset} is the resistance of a set-programmed and a reset-
programmed PCM cell, respectively. Therefore, for a given value of β, IP

assumes two different values, depending on whether the PCM cell has been

programmed to the set or the reset state. From (4.13), it is apparent that

the value of Vrd decreases with increasing values of IP (i.e., with decreasing

values of Rχ), which leads to a smaller spacing between the read currents

corresponding to the two programmed states.
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Since the noisy system is assumed to be memoryless, IR is then computed

by adding a zero-mean Gaussian noise. As previously introduced in this Section

(Figure 3), the noise variance depends on Rχ, being smaller for larger values

of the latter. Furthermore, since |IP (β,Rχ)| β↓0
−−→ 0, it is possible to assume

that the noise amplitude depends on β as well.

From (4.15), as the value of β decreases, the readout current associated

to a set-programmed cell gets closer to that associated to a reset-programmed

cell. This effect implies a dramatic degradation of the maximum fraction of

information that can be reliably recovered, as it is apparent in Figure 4.21.

This figure shows that, as β approaches 0, I(X ; Y ) is maximum for specific

values of the half-width, ∆I , of the uncertainty state. In other terms, ∆I has

to be set to a value such that gi → 0 and 1− φi >
1
2
∀i ∈ {0, 1}. Furthermore,

it is worth to note that the range of values of ∆I for which the maximum value

of I(X ; Y ) is reached gets smaller as β → 0.
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Figure 4.21: Maximum value of the mutual information as a function of the normalized half-

width ∆I of the uncertainty state and the normalized value of the parameter β characteristic

of the NMOS transistor YO that drives the bit line.

Figure 4.22 shows the value of the 0-bit input probability p0 for which the

maximum of I(X ; Y ) is reached for given values of β and ∆I .

It is important to note that, as β decreases from its maximum value,

p0 increases in average for every ∆I . This behavior highlights that a reset-

programmed PCM cell provides a smaller contribution to the noise of the

system than a set-programmed PCM cell. However, for β lower than a given

β, the average value of p0 approaches 0.5 for every value of ∆I . In fact, since

|IP (β,Rset)−IP (β,Rreset)| = |IH(β)−IL(β)|
β↓0
−−→ 0, the values of IP associated

to a set-programmed cell and a reset-programmed cell get closer to each other.

Therefore, 1−φi
β↓0
−−→ 0 ∀i ∈ {0, 1}, that is, I(X ; Y )

β↓0
−−→ 0 as well. Thus, when

β is really close to 0, I(X ; Y ) is maximized if and only if the input probabilities

are chosen as uniform as possible. It is worth to point out that the analysis of

the PCM system for β ↓ 0 is important from a scaling perspective.
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the bit line.

Furthermore, the above results provide useful directives for the PCM sys-

tem design. In fact, for a given PCM array, the maximum of the mutual

information expressed in (4.10) (i.e., the maximum of the reading process reli-

ability) can be approached by means of a proper combination of the electrical

characteristics of the reading architecture, the sensitivity of the electronic de-

vices involved in the process, and the input probability profile of the stored

data, even in a resistance drift-free and ISI-free environment.

4.2.3 Conclusions

This section introduces an information theory-based analysis of Phase Change

Memory technology. According to the procedure for reading PCM cells, the

generalized binary erasure channel apparently fits the requirements and the
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properties of the PCM reading process. Closed-form expressions of the gBEC

mutual information and experimental results are given as well.

Specifically, relationships between information recovery performance, elec-

trical parameters, and sensitivity of the reading architecture are provided. The

analysis that has been performed may play an important role for future de-

velopments of an information theory-based design of PCMs, especially in a

scaling perspective.

Further, q-ary LDPC codes can definitely be employed as ECC for PCMs.

In fact, an ECC employed in PCM control system has to exhibit the following

properties:

• very high coding rate;

• extremely low error floor;

• very good performance in the waterfall region.

Thus, the q-ary LDPC code design introduced in sections 2.2 and 2.3 fits

to the aforesaid requirements.
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Conclusions

The main course of this Ph.D. program has been represented by proper devel-

opment of design and decoding techinques of q-ary LDPC codes.

In Chapter 2 specific design methods for q-ary LDPC codes have been

introduced. Specifically, it has been shown as q-ary LDPC codes may be

suitable for applications with particular requirements as spectral efficiency,

very good bit-error rate performance at low SNRs, extremely low error floor

and powerful burst error correction capabilities.

Chapter 3 describes the main architectures for q-ary LDPC decoding. Specif-

ically, it focuses on decoding performance in terms of convergence and com-

putational complexity for PR channels. Further, it provides a brand new

structure that aims at jointly perform detection and decoding.

Chapter 4 introduces some prospective scenarios for q-ary LDPC codes.

However, wireless cooperative systems and PCM control system are not the

only fields q-ary LDPC codes might be suitable for. In fact, it has been proved

how q-ary LDPC codes may be extremely versatile and how proper q-ary LDPC

code design and decoding may bring to very powerful performance.

Therefore, q-ary LDPC codes can definitely play a fundamental role in the

future communication systems, from both academical and industrial points of

view. On the other hand, optimization of q-ary LDPC code performance is

147
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still an open issue. Thus, q-ary LDPC codes definitely represent one of the

most interesting research fields in communication engineering.
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List of acronyms

ADC Analog-to-digital converter

APP A posteriori probability

AWGN Additive white Gaussian noise

BB Bit based

BCJR Bahl-Cocke-Jelinek-Raviv

BEC Binary erasure channel

BER Bit-error rate

BP Belief propagation

BPSK Binary phase shift keying

BSC Binary symmetric channel

CBD Coded bit density

CIR Channel impulse response

CSD Cross stream decoding
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DDNP Data-dependent-noise-predictive

ECC Error correction code

EEPR4 Extended EPR4

EPR4 Extended class-4 partial response

FER Frame-error rate

FFT Fast Fourier Transform

FHT Fast Hadamard Transform

FIR Finite impulse response

FRC Full rank condition

gBEC Generalized binary erasure channel

HDD Hard-disk drive

ISD Independent stream decoding

ISI Intersymbol interference

LDPC Low-density parity-check

LDSM Linearly dependent set maximization

LLR Log-likelihood ratio

MAP Maximum a posteriori

ML Maximum likelihood

MLC Multilevel coding

MLSD Maximum likelihood sequence detector

MP Message-passing
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MREBL Maximum resolvable erasure-burst length

mSD Minimum space distance

MSD Multistage decoding

NVM Non-volatile memory

OBBD Optimal subblock-by-subblock detector

PC Parity-check

PCM Phase Change Memory

PEG Progressive edge-growth

PID Parallel independent decoding

PMR perpendicular magnetic recording

PR Partial response

PR4 Class-4 partial response

QC Quasi-cyclic

qEC q-ary erasure channel

QPSK Quadrature phase shift keying

QR Quasi-regular

qSC q-ary symmetric channel

RC Rate-compatible

RLL Run-length-limited

RS Reed-Solomon

SB Symbol based
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SCA Serially concatenated architecture

SFR Sector failure rate

SNR Signal-to-noise ratio

SOVA Soft-output Viterbi algorithm

TC Turbo code

TCA Turbo concatenated architecture

TCM Trellis coded modulation

TLR Turbo-like receiver

UBD User bit density
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