An Introduction to Inverse Problems and Optimisation in Electromagnetism

Paolo DI BARBA
Dept of Electrical Engineering
University of Pavia, Italy
paolo.dibarba@unipv.it
Reference textbooks

A Copernican revolution: from direct to inverse problems

• In engineering science, **direct problems** are defined as those where, given the input or the cause of a phenomenon or of a process in a device, the purpose is that of finding the output or the effect.

• Conversely, **inverse problems**, are those where, given the measured or expected output or effect, one wants to determine the input or the cause.

• The two types of problems, when applied to the same phenomenon or process, represent the two logical ways of conceiving it: from input to output or the other way round.
Classification of inverse problems

In electromagnetism, inverse problems may appear in either of two forms:

- given measured data in a field region, to recover the relevant sources or boundary conditions or material properties (identification or parameter-estimation problems);

- given the prescribed field in a device, to determine sources or b.c. or materials or shape of the device, producing the specified performance (synthesis or optimal design problems).
Insidiousness of inverse problems

From the mathematical viewpoint, following the Hadamard definition (1923), well-posed problems (or properly, correctly posed problems) are those for which:

• a solution always exists;
• there is only one solution;
• a small change of data leads to a small change in the solution.

Ill-posed problems, instead, are those for which:

• a solution may not exist;
• there may be more than one solution;
• a small change of data may lead to a big change in the solution.

The last property implies that the solution does not depend continuously upon the data, which often are measured quantities and therefore are affected by noise or error.
I ll-posed problems: remarks

- Identification problems have always a solution at least, while a solution may not exist for optimal design problems; this happens when e.g. the prescribed quantity does not fit with the data.

- On the contrary, if multiple solutions exist to a given problem, they might be similar, differing by e.g. a degree of agreement of field model to supplied data.

- Even if the agreement is very good, it might happen that the solution is unstable: a small perturbation in the data causes a large oscillation in the solution.

All these reasons make inverse problems more insidious than direct problems.
Inverse problems and design problems

- Any design problem can be formulated in mathematical terms as an inverse problem.

- In particular, optimal shape design problems, which are very popular in all branches of engineering, belong to a group of inverse problems where the purpose is to find the geometry of a device which can provide a prescribed behaviour or an optimal performance.

- The ultimate goal is to perform an automated optimal design (AOD), when the solution is obtained automatically in terms of the required or best performance.
Solving an inverse problem by minimising a functional

- In general, the \(n_v \) unknowns \(x \) of an inverse problem are called design variables or degrees of freedom. The design variables may be geometric coordinates of the field region or values of sources or parameters characterizing the region.

- The solution to an inverse problem is generally performed by means of the minimisation of a suitable function \(f(x) \) called objective function, or cost function, or design criterion. This function may represent some performance depending on the field, or simply the residual between computed and prescribed field values (error functional).

- In mathematical terms, the problem reads:
 \[
 \begin{align*}
 \text{given} & \quad x_0 \in \Omega \subseteq \mathbb{R}^{n_v} \\
 \text{find} & \quad \inf_{x} f(x), \quad x \in \Omega \subseteq \mathbb{R}^{n_v}
 \end{align*}
 \]

 where \(x_0 \) is an initial guess. Properly speaking, it is a problem of unconstrained minimisation; to be more meaningful, it is assumed that \(f \) is limited in \(\Omega \).
Constrained minimisation

• The objective function should fulfil constraints, which may be expressed as equalities, inequalities and side bounds. Formally, the problem can be stated as follows:

given \(x_0 \in \Omega \subseteq \mathbb{R}^{n_v} \)

find \(\inf_{x} f(x) , \ x \in \Omega \subseteq \mathbb{R}^{n_v} \)

subject to \(g_i(x) = 0 , \ i = 1,\ldots,n_c \)
\(h_j(x) \leq 0 , \ j = 1,\ldots,n_e \)
\(\ell_k \leq x_k \leq u_k , \ k = 1,\ldots,n_v \)

• Constraints and bounds set the boundary of the feasible region \(\Omega \) associated with function \(f(x) \), and define implicitly its shape in the \(n_v \)-dimensional design space.
Insidiousness of minimisation

- Classical optimality requires the following first-order necessary condition, better known as Kuhn-Tucker theorem (1951):

Let \tilde{x} be a local minimum point for $f(x)$ and let f, g_i, h_j differentiable functions. Then, there exists a vector $\tilde{\lambda} \in \mathbb{R}^{n_c+n_e}$ of multipliers such that

$$\nabla f(\tilde{x}) + \sum_{i=1}^{n_c} \tilde{\lambda}_i \nabla g_i(\tilde{x}) + \sum_{j=1}^{n_e} \tilde{\lambda}_{j+n_c} \nabla h_j(\tilde{x}) = 0$$

$$\tilde{\lambda}_i g_i(\tilde{x}) = 0, \quad \tilde{\lambda}_i \geq 0$$

- This is a sufficient condition for \tilde{x} to be a global minimum point if $f(x)$ is a convex function and Ω is a convex region.
Usable and feasible search direction S

Constrained minimization

Usable sector

Usable feasible sector

$g(X) = 0$

$F(X) = \text{constant}$

$\nabla F(X)$

$\nabla g(X)$

Optimum

A

B

$\nabla f(A) \cdot S \leq 0$

$\nabla g(A) \cdot S \leq 0$

$\nabla f(B) \cdot S = 0$

$\nabla g(B) \cdot S = 0$
Geometric interpretation of KT conditions

(constraint g_3 is not active in x^* and therefore $\lambda_3=0$)
Insidiousness of minimisation (2)

• In computational electromagnetism, it happens that functions f, g_i, and h_j are known only numerically as a set of values at sample points; therefore, classical assumptions about differentiability and convexity cannot be assessed.

• In particular, when the assumption of convexity is not applicable, f might exhibit some local minima in addition to the global minimum.

• Moreover, the numerical approximation of the gradient is time consuming; moreover, it is a potential source of fatal inaccuracies.
An alternative: evolutionary computing

- Darwinian evolution is intrinsically a robust search; it has become the model of a class of optimisation methods for the solution of real-life problems in engineering.

- The natural law of survival of the fittest in a given environment is the model to find the best design configuration fulfilling given constraints.

- The principle of natural evolution inspired a large family of algorithms that, through a procedure of self-adaptation in an intelligent way, lead to an optimal result (Goldberg, 1989).
A primary advantage of evolutionary computing is its conceptual simplicity.

A very basic pseudo-code of a typical algorithm:

i) initialize a population of individuals;
ii) randomly vary individuals;
iii) evaluate fitness of each individual;
iv) apply selection;
v) if the terminating criterion is fulfilled then stop, else go to step ii).
Evolutionary computing algorithms are:

- easy to implement;
- gradient-free;
- global-optimum oriented.

On the other hand, they are rather slow and costly, because of the high number of function evaluations required to converge.
An evolution strategy of lowest order

Evolution strategy mimics the survival of the fittest individual that is observed in nature.

The flow-chart of an algorithm (in which a single parent generates a single offspring) is here presented.
Generation of a new design point

Gaussian pdf of the old point

Gaussian pdf of the new point

The new point is generated in this interval.
Insidiousness of minimisation (3)

The No-Free Lunch (NFL) theorem (Wolpert and Macready, 1997)

There is no best algorithm, whether or not it is evolutionary.

Whatever an algorithm gains in performance on a class of problem, is necessarily lost by the same algorithm in the other problems.
FIELD-BASED OPTIMAL SHAPE DESIGN

Design vector x represents the geometry of the device to be synthesized.

Generally, j-th objective function f_j, $j = 1, n_f$ is a field-dependent quantity.

The following mapping applies:

$$\text{geometry } \{x\} \rightarrow \text{field } s(x) \rightarrow \text{objective } f_j(x, s(x)), \ j = 1, n_f$$

finite element analysis \Rightarrow Maxwell equations

The minimisation problem reads: find

$$\inf_x f_j(x, s(x)), \ x \in \Omega \subset \mathbb{R}^{n_v}, \ j = 1, n_f$$

subject to n_c field-dependent constraints

$$C = \{x \mid g_k(x, s(x)) \leq c_k \in \mathbb{R}, \ k = 1, n_c\}$$

In a problem of shape design, two aspects are always involved: the optimal synthesis of field s which takes place in the device, and the optimal design of device geometry x.
Numerical solution to design problems: AOD

A procedure of AOD requires, as a rule, a routine for calculating the field, which is integrated in a loop with a routine optimising the objective function.
Numerical solution to design problems (2)

• The device to be optimised is represented by a numerical model in two or three dimensions (i.e. a grid of nodes and elements).

• The main flow of the computation is driven by the optimisation routine (e.g. evolution strategy). Starting from \(x_0 \), an iterative procedure updates the current design point \(x_k \) in \(x_{k+1} \).

• Given \(x_{k+1} \), the routine of field analysis generates a new finite-element grid, the field simulation is restarted and the evaluation of \(f(x) \) is so updated.

• If the procedure converges, the result could represent either a local minimum or the global minimum or simply a point better than the initial one, because \(f \) has decreased; in the latter case, a mere improvement (and not the optimisation) of \(f \) has been achieved.
Numerical solution to design problems (3)

• Usually, the analysis of field can be performed either by differential methods originated from Maxwell equations (finite-difference method, finite-element method), or by integral methods derived from Green theorem (boundary-element method).

• In turn, numerical optimisation can be achieved by means of deterministic (i.e. gradient-based) methods or evolutionary (i.e. gradient-free) methods.

• Nowadays, most of commercially available codes devoted to electromagnetic field simulation are based on the finite-element analysis (FEA): they proved, in fact, to offer a general-purpose and flexible tool of field simulation.
Numerical solution to design problems (4)

- Commercial FEA codes are equipped with a user interface, which enables the designer to develop a model in two or three dimensions by means of graphical operations only.

- These features make the simulation environment rather friendly and easy to use; so, in practice, FEA has become the most popular tool, mainly in an industrial centre for R&D.

- The combination of any method for analysis and any method for minimisation gives origin to a variety of iterative procedures for solving an optimal design problem.
Multiobjective formulation of a design problem

Often, in electromagnetic design, multiple objective functions should be optimised simultaneously.

These problems belong to the category of multi-objective or multi-criteria. Their formulation is characterized by a vector of objective functions.

Formally, considering \(n_v \) variables and \(n_f \) objectives, one has:

\[
\text{given} \quad x_0 \in \mathbb{R}^{n_v} \quad \text{find} \quad \inf_{x} F(x), \quad x \in \mathbb{R}^{n_v}, \quad F \in \mathbb{R}^{n_f}
\]

subject to \(n_c \) inequality and \(n_e \) equality constraints

\[
g_i(x) \leq 0, \quad i = 1, n_c \quad \quad h_j(x) = 0, \quad j = 1, n_e
\]

and to \(2n_v \) side bounds

\[
\ell_k \leq x_k \leq u_k, \quad k = 1, n_v
\]
Mapping from design space to objective space

n_v - dimensional

n_f - dimensional
Preference function formulation

Traditionally, the multiobjective problem is reduced to a single-objective one by means of a preference function \(\psi(x) \), e.g. the weighted sum of the objectives:

\[
\psi(x) = \sum_{i=1}^{n_f} c_i f_i(x)
\]

with \(0 < c_i < 1 \), \(\sum_{i=1}^{n_f} c_i = 1 \)

\(\psi(x) \) should be minimised with respect to \(x \in \mathbb{R}^{n_v} \) subject to the problem constraints.

The hierarchy attributed to the \(i \)-th objective can be modified by changing the corresponding weight \(c_i \). For a given set of weights, the relevant solution, if any, is assumed to be the optimum.
Pareto optimality (1)

The most general solution to the design problem is given by the front of Pareto-optimal solutions.

Solutions for which the decrease of an objective is not possible without the simultaneous increase of at least one of the other objectives.

This means to have a family of solutions to be compared.
A solution is said to **dominate** another one if the first is better than the second with respect to one objective, without worsening all the other objectives.

Two solutions are **indifferent** to each other if the first is better than the second for some objectives, while the second is better than the first in all the other objectives.
Pareto optimality (3)

Given two solutions x_j and x_k

<table>
<thead>
<tr>
<th>situation</th>
<th>consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_j dominates x_k</td>
<td>x_j is better than x_k</td>
</tr>
<tr>
<td>x_k dominates x_j</td>
<td>x_k is better than x_j</td>
</tr>
<tr>
<td>none of the two</td>
<td>x_j and x_k are indifferent</td>
</tr>
</tbody>
</table>
Two key definitions

Let \(Y \subseteq \mathbb{R}^{n_f} \) be an objective space. Then, a point \(y \in Y \) is said to be **Pareto optimal** if no point \(\tilde{y} \in Y \) exists such that \(\tilde{y} \) dominates \(y \).

Let \(F(x) : X \to Y \) be a vector of \(n_f \) objectives, with design space \(X \subseteq \mathbb{R}^{n_x} \) and objective space \(Y \subseteq \mathbb{R}^{n_f} \):
- the set \(\Phi = \{ y \in Y \mid y \text{ is Pareto optimal} \} \) is the **Pareto front** (PF);
- the set \(\Xi = \{ x \in X \mid F(x) \in \Phi \} \) is the **Pareto set** (PS).
Correspondence between PF and PS

In practice, the objective space Y is the control space

Metric criteria to identify non-dominated solutions in the design space X

The PS topology depends on the Y to X inverse mapping: it might form e.g. a set of islands
Dominance dihedral

Orthogonal sector in the objective space:
- has its vertex at a given point y_0;
- contains all the points y_k such that $F^{-1}(y_k)$ dominates $F^{-1}(y_0)$.

If the dihedral is empty, then $F^{-1}(y_0)$ is said to be non-dominated.
The objective space: a geometric interpretation in 2D

ideal objective vector

\[U = \left(U_1, \ldots, U_i, \ldots, U_{n_f} \right) \]

\[U_i = \inf_{x} f_i(x), \ i = 1, n_f \]

\[f_i(\tilde{x}_i) = U_i, \ \tilde{x}_j \neq \tilde{x}_{j+1}, \ i = 1, n_f, \ j = 1, n_f - 1 \]

If \(U_i = U_{i+1}, i = 1, n_f - 1 \) then the optimisation problem is single-objective

A conflict exists
HIGHER-ORDER DIMENSIONALITY $n_f>2$

Metric matrix ($n_f=3$)

$$M = \begin{bmatrix}
U_1 & f_2|_{f_1=U_1} & f_3|_{f_1=U_1} \\
U_2 & f_3|_{f_2=U_2} & f_3|_{f_2=U_2} \\
U_3 & f_3|_{f_3=U_3} & U_3
\end{bmatrix}$$

Nadir point

$$R_i = \max_{j=1,n_f} M_{ij}, \quad i = 1, n_f$$

Utopia point

n_f SO optimisations
PREFERENCE FUNCTIONS

Scalarizing distance
\[\| R - U \| \]

Possible preference functions
\[
\psi(x) = \sum_{i=1}^{n_f} \frac{w_i f_i(x)}{R_i - U_i} , \quad \sum_{i=1}^{n_f} w_i = 1 , \quad w_i \in \mathbb{R}^+
\]

\[
\psi(x) = \sum_{i=1}^{n_f} \frac{w_i f_i(x) - g_i(x)}{R_i - U_i} , \quad \sum_{i=1}^{n_f} w_i = 1 , \quad w_i \in \mathbb{R}^+
\]

\[g_i(x) \] user-defined goal

\[n_f + 1 \text{ SO optimisations} \rightarrow 1 \text{ Pareto-optimal solution} \]

Open problem:
spacing of Pareto-optimal solutions along the front
Geometric classification of the PF in 2D (1)

PF as a function of n_f objectives:

$$\tilde{f}_{n_f} = \tilde{f}_{n_f}(f_1, \ldots, f_{n_f - 1})$$

Typical topologies of front

Ad hoc optimisation algorithms
Geometric classification of the PF in 2D (2)

Non-uniformly sampled PF (deceptive topology)

Non-linear objective functions
Multimodal optimisation problems

non-convex objective functions

local fronts, in addition to the global front
Handling constraints

Penalty function method (conventional) \(\varphi(x) = \psi(x) + \sum_{i=1}^{n_c} r_i [g_i(x)]^2, \ r_i > 0 \)

Constraint-dominance principle (parameter-less)

A solution \(j \) constraint-dominates a solution \(k \), if any is true:

- \(j \) is feasible and \(k \) is not;
- \(j \) and \(k \) are both infeasible, but \(j \) has a smaller constraint violation;
- \(j \) and \(k \) are feasible and \(j \) dominates \(k \).
Logical paths of classical and Paretian formulations

Constrained MOOP: \(f_i(x_1, x_{n_i}), \ldots, f_{n_f}(x_1, x_{n_f}) \)

Higher-level information

Estimate a weighting vector: \((w_1, \ldots, w_{n_f}) \)

SO optimisation problem: \(F = \sum_{i=1}^{n_f} w_i f_i \)

Multiple trade-off solutions found

MO optimiser

Problem

Classical methods

Pareto optimality

Choose one solution

Higher-level information

Solution
Classical Approach: Weighted Sum Method

- Construct a weighted sum of objectives and optimize

\[F(x) = \sum_{i=1}^{M} w_i f_i(x) \]

- User supplies weight vector \(w \)
Difficulties with Classical Methods

- Nonuniformity in Pareto-optimal solutions
- Inability to find some solutions
- Epsilon-constraint method still requires an ε-vector

The ε-formulation reads:

given a set of n_f-1 values $\{\varepsilon_j\}$, $\varepsilon_j \in \mathbb{R}$

find $\inf_{x} f_i(x) , x \in \Omega \subseteq \mathbb{R}^n$.

subject to $f_j(x) \leq \varepsilon_j , j \neq i , j = 1,n_f$
USING EVOLUTIONARY ALGORITHMS

- Population approach suits well to find multiple solutions

- Niche-preservation methods can be exploited to find diverse solutions

- Implicit parallelism helps provide a parallel search

- Shape of Pareto front is not a matter (e.g. non-convexity, disconnectedness)
Modify the fitness computation

Emphasize non-dominated solutions for convergence

Emphasize less-crowded solutions for diversity

Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II)
INDIVIDUAL-BASED APPROACH
WHAT TO CHANGE IN A BASIC ESTRA?

Modify the acceptance criterion of the offspring

\[f_1, f_2, y_1, y_2, y_3, y_4 \]

domination dihedral \(\text{wrt} \ y_1 \)

\((y_2, y_3) \) are accepted, \(y_4 \) is rejected

Multiobjective Evolution Strategy (MOESTRA)
PRACTICAL METHODS TO SOLVE EMO IN ELECTROMAGNETISM

Two main streams can be observed

- use approximation techniques
- identify a surrogate model of objectives and constraints
 then
- use an evolutionary algorithm to optimize

- preserve the use of FEA (very flexible!) to solve the direct problem, but
- reduce the solution time of field analysis
- implement cost-effective strategies

well suited for an industrial R&D centre
SURROGATE MODELS

Predictor formula

\[
f_k(x) \approx s_k(x) = \sum_{i=1}^{m_s} b_i \psi_i(x) + \sum_{j=1}^{n_s} \beta_j \phi(x - x_j), \quad k = 1, n_f
\]

global basis function
local basis function

Kriging model

\[
\phi(x - x_j) = e^{-\sum_{j=1}^{n_s} \theta_j |x - x_j|^{p_j}} \quad \theta_j \geq 0 \quad p_j \in [0, 2]
\]

Scalarizing methods
Combine the surrogates of multiple objectives into a preference function; then, single-objective optimisation.

Non-scalarizing methods
Consider the surrogate of each objective individually; then, non-dominated solutions.
CASE STUDY

Permanent-magnet generator for automotive applications.

A very similar device was used as the alternator on board of fast cars for sport competitions.

Design problem: identify the shape of the device such that

- power loss in copper windings
 \[
 f_1(x) = \int_{\Omega_1(x)} \rho[J(x)]^2 \, d\Omega
 \]
- power loss in the iron core
 \[
 f_2(x) = \int_{\Omega_2(x)} p(B(x)) \, d\Omega
 \]

are minimum.

Constraint: load 500 W, no-load peak voltage 50 V, speed 9,000 rpm
NSGA-II AND MOESTRA IN ACTION

Detail of the FE mesh.

Magnetization curve of iron core.

Iron specific-loss curve.

Left: prototype solution, right: a Pareto optimal solution.
NON-CONFLICTING MULTIPLE OBJECTIVES

An axisymmetric antenna for magnetic induction tomography

Optimal design problem
Find the antenna shape, identified by variables \((\alpha, \delta, \rho)\), such that:
the magnetic field along the antenna axis \((z>0)\) is maximum, and simultaneously
the stray field behind the antenna \((z<0)\) is minimum.
NON-CONFLICTING MULTIPLE OBJECTIVES (II)

Optimisation results for $f = 10$ kHz

Optimisation results for $f = 100$ kHz

The optimum is unique (zero-dimensional Pareto front)
HIGHER-ORDER DIMENSIONALITY $n_f > 2$ (I)

Method of orthogonal projections

Design points are mapped in all possible 2D subspaces

$$(f_i, f_j), \ i, j = 1, n_f , \ i \neq j$$

Effective for objective space representation

Unpractical for identifying P-optimal solutions
HIGHER-ORDER DIMENSIONALITY n_f>2 (II)

The device
Electrostatic microactuator

Design variables
rotor inner radius
rotor slot width

Objectives
static torque, to be max
torque ripple, to be min
radial force (friction), to be min

E. Costamagna, P. Di Barba, A. Savini, Shape design of a MEMS device by Schwarz-Christoffel numerical inversion and Pareto optimality, COMPEL, vol. 27, 2008
In EMO, evaluating the performance of an optimisation algorithm and assessing results is a challenging task.

Some goals of benchmarking:

• Move from test problems to industrial benchmarks

• Investigate topological properties of the PF (convex/non-convex, connected/non-connected, uniformly/non-uniformly spaced)

• Define suitable metrics to measure the distance of a given solution point from the front
Possibly, the multiobjective formulation of TEAM problems 22 and 25 should be improved.
DESIGN SENSITIVITY AND MOSD

Evaluate the sensitivity of a solution in the objective space (especially, along the PF) with respect to a perturbation in the design space.
DESIGN SENSITIVITY AND MOSD

Numerically derived sensitivity

solution distance

\[
d(g_i, g_j) = \left[\sum_{k=1}^{n_v} [g_i(k) - g_j(k)]^2 \right]^{1/2}, \quad i = 1, n_p - 1, \quad j = 2, n_p, \quad j > i
\]

\(n_v\)-dimensional hypercube
encapsulating design space \(\Omega\)

\[V = \prod_{k=1}^{n_v} \left[\sup_{\Omega} \|g(k)\| - \inf_{\Omega} \|g(k)\| \right] \]

distance threshold
\[
\delta = \sqrt{n_v \left(n_p \right)^{-1} V^{\frac{1}{n_v}}}
\]

\(d(\tilde{g}, g_j) < \delta, \quad j = 2, n_p\)

perturbation domain \(\omega\) relevant to \(\tilde{g}\)

sensitivity
\[
s(\tilde{g}) = \left[f_\ell(\tilde{g}) \right]^{-1} \left[\sup_{\omega} f_\ell(g) - \inf_{\omega} f_\ell(g) \right] \equiv \frac{\Delta f_\ell}{f_\ell}, \quad f_\ell(\tilde{g}) \neq 0, \quad \ell = 1, n_\ell
\]

discrete Lipschitz's constant
PERFORMANCE vs SENSITIVITY

A maglev device

Design variables
dimensions of permanent magnets and field correctors

Dependence of Pareto front on force sensitivity s

Objectives
- levitation force
- supercon area

$s < 0.1$

$s < 0.15$
The adaption rate $0 < \lambda < 1$ of the FE mesh is ruled by the annealing operator of a basic evolution strategy.

A low-cost mesh is generated when a large search radius is taken on and, conversely, a finer mesh is generated when a small region is investigated.

$$\lambda(k) = \lambda_{\min} \left(1 - \frac{m(k)}{n}\right) + \lambda_{\max} \frac{m(k)}{n}$$

$$n = \frac{\log d_f - \log d_0}{\log q}$$

$$m(k) = \frac{\log d(k) - \log d_0}{\log q}$$

d_0 initial search tolerance
d_f final search tolerance
k iteration index
q annealing rate
CASE STUDY

Stopping criterion: search tolerance < 10^{-6}

Fixed vs variable adaption
(fixed $\lambda=0.15$, variable $0.02<\lambda<0.2$)
CASE STUDY (II)

Objective function history

Fixed adaption

Variable adaption
CASE STUDY (III)

User-defined accuracy: the optimisation stops when

$$\rho_i(k) \equiv \frac{f_{ki}}{f_{0i}} \leq \eta, \ i=1,2, \ k \geq 0$$

Prescribed $\eta = 0.75$

$x = [10.18, 1.06, 2.38, 8.03, 2.95]$ mm

$\rho_1=0.75, \rho_2=0.4$

$k=49$

$x = [10.81, 0.99, 2.09, 6.84, 3.07]$ mm

$\rho_1=0.65, \rho_2=0.36$

$k=43$
CASE STUDY (IV)

User-defined time: the optimisation stops after e.g. 1 hour

- $x = [9.70, 1.21, 2.40, 7.93, 3.00] \text{ mm}$
- $f_1 = 5.5 \text{ mW}$, $f_2 = 179.3 \text{ mW}$

11 iterations done in 1 hour

Improvement: 20% for f_1, 60% for f_2
CASE STUDY (V)

Fixed adaption
Variable adaption
AN ALTERNATIVE: NASH GAMES

An *a priori* method to provide the designer with a *single optimum*.

Each player minimises his own objective by varying a single variable and assuming that the values of the remaining \(n-1 \) objectives are fixed by the other \(n-1 \) players. If it happens that no player can further reduce his objective, it means that the system has converged to an equilibrium.

Let \(\Omega \) and \(\Omega_i \) be the global design space and the design space of the \(i \)-th objective, such that
\[
\Omega_i \subset \Omega = \Omega_1 \times \ldots \times \Omega_i \times \ldots \times \Omega_n
\]

Then, a point \((\tilde{x}_1, \ldots, \tilde{x}_i, \ldots, \tilde{x}_n) \in \Omega \) is a *Nash equilibrium* (NE) if

\[
f_i(\tilde{x}_1, \ldots, \tilde{x}_{i-1}, \tilde{x}_i, \tilde{x}_{i+1}, \ldots, \tilde{x}_n) =
\]

\[
= \inf_{x_i \in \Omega_i} f_i(\tilde{x}_1, \ldots, \tilde{x}_{i-1}, x_i, \tilde{x}_{i+1}, \ldots, \tilde{x}_n) \quad \forall i = 1, \ldots, n
\]
AN ALTERNATIVE: NASH GAMES

2D analytical test case

\[f_1 = x_1^2 + x_2^2 \]
\[f_2 = (x_1 - 1)^2 + (x_2 - 1)^2 \]
Player 1 optimizes $f_1(x_1,x_2)$ acting on x_1 and receiving x_2 from player 2 at the previous iteration; then, player 1 sends the result to player 2.

Player 2 optimizes $f_2(x_1,x_2)$ acting on x_2 and receiving x_1 from player 2 at the previous iteration; then, player 2 sends the result to player 1.

The game is over (Nash equilibrium) when neither player 1 nor player 2 can further improve their objectives.
PM THREE-PHASE MOTOR

Design variables: height and width of magnet

Objectives for no-load operation: cogging torque (to be min), air-gap radial induction (to be max)

Shape design of a magnetic pole

Design variables:
\((a_1,a_2,a_3,a_4)\)

The problem reads: **find the time-dependent family of non-dominated solutions** from \(t = 0^+\) to steady state such that

- air-gap induction is maximum
- power loss in the winding is minimum

under the constraint that

the power loss in the pole and the core at a given time instant \((t=10^{-2}\tau)\) is not greater than the power loss in the winding.

Time constant depends on geometry

\[
\tau_1 = \mu \sigma_2 \left[\inf_k \lambda(k) \right]^2, \quad k = 1, n_p
\]

\[
\lambda(k) = \min[a_2(k) - a_1(k), a_4(k) - a_3(k)], \quad k = 1, n_p
\]
The energy constraint, active in the first part of the transient magnetic diffusion, influences the Pareto front shape at any subsequent time instant!

Also the solution shape is different!

Geometry and flux lines of a non-dominated solution at steady state (time-unconstrained PF):

\[f_1 = 846.031 \text{ mT}, \; f_2 = 40.073 \text{ mT (prescribed } f_1 = 850 \text{ mT}); \; a_1 = 32 \text{ mm, } a_2 = 45 \text{ mm, } a_3 = 6 \text{ mm, } a_4 = 25 \text{ mm.} \]

Time unconstrained

Time constrained

Geometry and flux lines of a non-dominated solution at steady state (time-constrained PF):

\[f_1 = 855.773 \text{ mT}, \; f_2 = 84.628 \text{ mT (prescribed } f_1 = 850 \text{ mT}); \; a_1 = 22 \text{ mm, } a_2 = 72 \text{ mm, } a_3 = 19 \text{ mm, } a_4 = 24 \text{ mm.} \]
If the energy constraint is not active, the problem becomes adynamic.
MOVING ALONG THE PARETO FRONT

John necessary condition:

Pareto optimal solution \(\tilde{x} \) satisfies

1. \(\sum_{i=1}^{n_f} \lambda_i \nabla f_i(\tilde{x}) = \sum_{k=1}^{n_c} \ell_k \nabla g_k(\tilde{x}) \) and

2. \(\ell_k g_k(\tilde{x}) = 0 \), \(k = 1, n_c \)

- Requires differentiable objectives and constraints
- Outlines the existence of some common properties among Pareto-optimal solutions
- If objectives \(f_i(x), i=1,n_f \) are convex and \(\Omega \) is a convex region, the condition is sufficient too.
MOVING ALONG THE PARETO FRONT (II)

Evolutionary, genetic and migratory algorithms, often employed in MOO, are powerful, but affected by some inherent limits, the most evident of which is the absence of theoretical proofs of convergence.
Individuals of a population-based method of optimisation run towards improvement through a randomness guided by a set of possible heuristics.

An alternative way is developing a statistical method to identify the regions of the X space – the most interesting one to the designer – which are more likely to map onto P-optimal solutions.

The designer, then, should be provided not with a large collection of supposed-optimal individuals, but with a distribution of probability in the X space, which yields optimal configurations with a given degree of certainty.
A formulation of a MOO problem could rely on the Bayes theorem, the goal being just shaping some probability surfaces, to identify the most promising candidate regions for P-optimal solutions. The problem is no more in terms of an evolving population of individuals, but covering the search space with a probability density, to eventually know what subsets are likely to be a part of the PS.
Let an optimisation process have already produced some individuals, among which the non-dominated ones have been ranked out.

Then, given a point belonging to the X space, its probability of belonging to the P-set is proportional to its probability of mapping onto a non-dominated point in the Y space, times the probability that a non-dominated point be P-optimal.
Given the \textit{a priori} information I and defined the two propositions:

\begin{align*}
\mu(x) \quad & x \in X \quad \leftrightarrow \quad \text{“} x \text{ belongs to the PS”} \\
\phi(y) \quad & y \in Y \quad \leftrightarrow \quad \text{“} y \text{ belongs to the PF”}
\end{align*}

the Bayes theorem reads

\[
p(\phi(y) | \mu(x), I) = \frac{p(\mu(x) | \phi(y), I) p(\phi(y) | I)}{p(\mu(x) | I)}
\]

\textbf{backward mapping term} \hspace{5cm} \textbf{forward mapping term}

\textbf{stopping term: the probability for any point } y \text{ to belong to the PF}

\textbf{normalizing constant}
Design vector \(a = (h_1, h_2, \ell, x, \alpha) \in \Omega \subset \mathbb{R}^5 \)

Find \(\inf_{a \in \Omega} C(a) \)

\[C(a) = c_{\text{iron}} V_{\text{iron}}(a) + c_{\text{copper}} V_{\text{copper}}(a) \]

and \(\sup_{a \in \Omega} F_y(a) \)

\[F_y(a) \approx \frac{\Delta W'(a)}{\Delta y} \bigg|_{g=g_0} \]

subject to \(\sup_{\Omega_w(a)} |B_y(a)| \leq B_0 \)
OPTIMISATION RESULTS (I)

F-space sampling (circle), with relevant PF (star), and PF derived after optimisation (triangle).
OPTIMISATION RESULTS (II)

PS projected on the \((h_1,h_2)\) plane after optimisation

Other optimal solutions can be generated at zero cost, by means of new extractions, until the requirements of the designer in terms of likelihood are met.
Pareto optimality and MEMS design

Fostered by the development of new technologies, micro-electro-mechanical systems (MEMS) are massively present on board of vehicles, within information equipment, in manufacturing systems as well as in medical and healthcare equipment.

The miniaturisation of electromechanical systems will impact our society as deeply as did the mass production of electronic systems in the latest forty.

However, only in more recent times has the design of MEMS been approached in a systematic way employing automated optimal design.

Accordingly, the design problem is set up as a problem of non-linear multi-objective optimization of design criteria subject to a set of constraints.

The approach implies suitable computational environments made available by the progress in artificial intelligence, where modelling tools are integrated with soft computing tools.
Comb drive MEMS
3D geometry

10 fixed electrodes (u=1V)

9 movable electrodes (u=0 V)

grounded substrate
Comb drive MEMS: cross-sectional view
Comb drive MEMS
Field analysis

Laplace equation + Maxwell stress tensor
Comb drive MEMS - FE mesh

<table>
<thead>
<tr>
<th>Mesh characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum element quality</td>
<td>0.2818</td>
</tr>
<tr>
<td>Average element quality</td>
<td>0.7927</td>
</tr>
<tr>
<td>Tetrahedral elements</td>
<td>170840</td>
</tr>
<tr>
<td>Triangular elements</td>
<td>34468</td>
</tr>
<tr>
<td>Edge elements</td>
<td>2812</td>
</tr>
<tr>
<td>Vertex elements</td>
<td>172</td>
</tr>
<tr>
<td>Maximum element size</td>
<td>2.64 μm</td>
</tr>
<tr>
<td>Minimum element size</td>
<td>0.0264 μm</td>
</tr>
<tr>
<td>Resolution of curvature</td>
<td>0.2</td>
</tr>
<tr>
<td>Resolution of narrow regions</td>
<td>1</td>
</tr>
<tr>
<td>Maximum element growth rate</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Comb drive MEMS
Force simulation

Approximately, it turns out to be:

$$F_z = k(z - z_0)$$

Drive force F_x vs x-directed displacement (main effect)

Levitation force F_z vs z-directed displacement (side effect)

"electrostatic spring"
Constant k
movable electrode equilibrium height z_0
Comb drive MEMS - Optimal design problem

Optimal shape design problem

The goal of the optimal shape design problem is to find the family of geometries which maximise the x-directed drive force between movable and fixed electrodes, and simultaneously minimise the z-directed levitation force (electrostatic spring effect).

Four-dimensional design space

Design variables: width and height of movable and fixed electrodes, respectively. Design vector \(\mathbf{a} = (w_m, w_f, h_m, h_f) \). Range: from 2 to 8 \(\mu \text{m} \). Discrete-valued (step 0.1 \(\mu \text{m} \)).
Two-dimensional objective space

Vector of objective functions \(F = (f_1, f_2) \) with

drive \(f_1(a) = F_x(x, a) \) for \(z = 0 \) and \(-13 \leq x \leq 0 \mu m\),
 to be maximised with respect to \(a \),

levitation \(f_2(a) = F_z(z, a) \) for \(x = -13 \mu m \) and \(0 \leq z \leq 4 \mu m\),
 to be minimised with respect to \(a \).

Both \(f_1 \) and \(f_2 \) are subject to the solution of the field analysis problem.
Comb drive MEMS - Optimal design results
Comb drive MEMS - Optimal design results
X and F coordinates of individuals in the final generation

<table>
<thead>
<tr>
<th>Width of mobile fingers w_m [µm]</th>
<th>Width of fixed fingers w_f [µm]</th>
<th>Height of mobile fingers h_m [µm]</th>
<th>Height of fixed fingers h_f [µm]</th>
<th>F_x drive force [N] x*10^{-10}</th>
<th>Slope of F_z vs. z [Nm^{-1}] x*10^{-10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
<td>6.2</td>
<td>6.1</td>
<td>3.8848</td>
<td>2.7915</td>
</tr>
<tr>
<td>7.7</td>
<td>7.8</td>
<td>7.7</td>
<td>7.8</td>
<td>5.8568</td>
<td>4.0328</td>
</tr>
<tr>
<td>7.1</td>
<td>7.3</td>
<td>7.5</td>
<td>7.4</td>
<td>5.3189</td>
<td>3.2187</td>
</tr>
<tr>
<td>6.1</td>
<td>6.1</td>
<td>6.2</td>
<td>6.1</td>
<td>3.9496</td>
<td>2.862</td>
</tr>
<tr>
<td>7.6</td>
<td>7.7</td>
<td>7.8</td>
<td>7.9</td>
<td>5.8543</td>
<td>3.7876</td>
</tr>
<tr>
<td>7.7</td>
<td>7.7</td>
<td>7.8</td>
<td>7.8</td>
<td>5.8491</td>
<td>3.702</td>
</tr>
<tr>
<td>7.6</td>
<td>7.8</td>
<td>7.7</td>
<td>7.8</td>
<td>5.8385</td>
<td>3.5745</td>
</tr>
<tr>
<td>7.1</td>
<td>7.2</td>
<td>7.5</td>
<td>7.4</td>
<td>5.3614</td>
<td>3.2781</td>
</tr>
<tr>
<td>7.5</td>
<td>7.7</td>
<td>7.7</td>
<td>7.8</td>
<td>5.7529</td>
<td>3.4235</td>
</tr>
<tr>
<td>7.7</td>
<td>7.8</td>
<td>7.7</td>
<td>7.8</td>
<td>5.7975</td>
<td>3.5168</td>
</tr>
</tbody>
</table>
While there have been significant improvements in the capabilities in the area of MO design, the uptake by industrial designers has been somewhat limited. There are, possibly, two reasons for this. The first is that the evidence, at the industrial level, that computer-based optimisation processes can actually enhance a designer’s ability to create a better product has been lacking. The second relates to the fact that most optimisation packages currently available only handle a single objective and a limited number of design variables. In fact, suitable optimisation systems, with no restriction in the size of the design space to be explored, and with simple and flexible expressions of objectives and constraints, would help match the needs of the designer.