FACOLTA' DI INGEGNERIA       Universita' di Pavia
Home
  Didattica > Insegnamenti0708 > Visione Artificiale
Organizzazione e Sedi
Immatricolarsi ai C.d.L.
Immatricolarsi ai C.d.L.M.
Orientamento
Didattica
Prenotazione Aule
Master
Esami: Iscrizioni online
Ricerca Scientifica
Servizi
Rapporti con Imprese
Tirocini didattici
Eventi e Iniziative
Bandi e Offerte lavoro
Esami di Stato
Mobilità/Erasmus
Rapporti di riesame
Assicurazione Qualità
Guida dello Studente
Scorciatoie
Cerca nel sito
Visione Artificiale

Insegnamento Anno Accademico 07-08

Docente/i: Virginio Cantoni  

Denominazione del corso: Visione Artificiale
Codice del corso: 064110
Corso di laurea: Ingegneria Informatica
Settore scientifico disciplinare: ING-INF/05
Crediti formativi: CFU 5
Sito web del corso: n.d.

Obiettivi formativi specifici

Questo corso si basa su lezioni teoriche (su 6-8 argomenti), corredate da altrettante esercitazioni sperimentali in cui si elaborano immagini e video. L’obiettivo è quello di acquisire familiarità con le principali tecniche per la visione artificiale sia attraverso la conoscenza dei problemi legati alla elaborazione di elevate quantità di dati, sia attraverso la scrittura di programmi che consentano di utilizzare e confrontare algoritmi esistenti in letteratura. Infine, si da un accenno ai problemi delle architetture specializzate.

Programma del corso

Concetti introduttivi
Obiettivi didattici, aspetti culturali e tecnologici della visione artificiale. Aspetti di geometria digitale e computazionale. Le diverse metriche, i concetti di adiacenza, distanza, oggetto e sfondo. Definizioni di contorno, sua codifica e rappresentazione.

Operatori puntuali e locali
Trasformazioni ed equalizzazione dei livelli di grigio, binarizzazione. Operatori locali, aspetti generali, elaborazione seriale e parallelo. Operatori lineari, filtraggio. Operatori di rango, trasformata di rango.

Formazione di una immagine
Fotometria applicata all’analisi e alla sintesi di immagini. Effetti della geometria del sistema di acquisizione, funzione di distribuzione di riflettanza, superfici opache e superfici speculari, mappe di riflettanza. Forma da ombreggiatura.

Visione 3D e metodi stereometrici
Geometria della visione stereoscopica, calibrazione, invarianti prospettici. Immagine gaussiana estesa (EGI).

Sequenze di immagini e stima del movimento
Forme che evolvono e oggetti in movimento. Analisi del movimento, stima basata sul flusso ottico, stima basata su corrispondenze discrete. Analisi di forme 2D in evoluzione.

Riconoscimento di forme
Matching diretto, metodi statistici, metodi linguistici, metodi strutturali. Trasformata di Hough per il riconoscimento di forme espresse in forma analitica (rette, cerchi, parabole) e per poligoni regolari. Trasformata di Hough generalizzata.

Sistemi funzionalmente specializzati per la visione artificiale
DSP. Circuiti integrati per applicazioni specifiche utilizzati per primitive di elaborazione di immagini. Architetture a multiprocessore, memoria locale e condivisa; architetture a multirisoluzione: piramidi con diverse strutture. Tecniche di “planning”, complessità algoritmica. Rapporto fra architettura ed algoritmi per la visione artificiale.

Prerequisiti

Nessuno.

Tipologia delle attività formative

Lezioni (ore/anno in aula): 32
Esercitazioni (ore/anno in aula): 0
Laboratori (ore/anno in aula): 0
Progetti (ore/anno in aula): 18

Materiale didattico consigliato

Sono disponibili anche tutte le presentazioni in formato Powerpoint delle lezioni

V. Cantoni, S. Levialdi. La Visione delle Macchine. Tecniche Nuove, Milano, 1989.

Modalità di verifica dell'apprendimento

Dopo avere elaborato casi reali di stima di distanza con stereovisione, stima del moto su video e sequenze di immagini reali e generate a calcolatore, di riconoscimento di forme e aver sintetizzato scene semplici, si devono produrre delle relazioni in cui oltre a presentare e inquadrare i singoli argomenti si devono commentare i risultati ottenuti. Le relazioni vanno consegnate su CD o producendo un sito su internet. È consigliata una intensa attività in piccoli gruppi di due o al massimo tre persone. La valutazione di massima è fatta sulle relazioni.

Copyright © Facoltà di Ingegneria - Università di Pavia