FACOLTA' DI INGEGNERIA       Universita' di Pavia
Home
  Didattica > Insegnamenti1213 > Biomatematica() Translate this page in English
Organizzazione e Sedi
Immatricolarsi ai C.d.L.
Immatricolarsi ai C.d.L.M.
Orientamento
Didattica
Prenotazione Aule
Master
Esami: Iscrizioni online
Ricerca Scientifica
Servizi
Rapporti con Imprese
Tirocini didattici
Eventi e Iniziative
Bandi e Offerte lavoro
Esami di Stato
Mobilità/Erasmus
Rapporti di riesame
Assicurazione Qualità
Guida dello Studente
Scorciatoie
Cerca nel sito
Biomatematica()

Insegnamento Anno Accademico 12-13

Docente/i: Piero Colli Franzone  

Denominazione del corso: Biomatematica()
Codice del corso: 500703
Corso di laurea: Bioingegneria
Sede: Pavia
Settore scientifico disciplinare: MAT/08
L'insegnamento è affine per:
Crediti formativi: CFU 6
Sito web del corso: n.d.

Obiettivi formativi specifici

L’insegnamento si propone di introdurre lo studente alla modellazione matematica e alla simulazione di alcuni principali processi metabolici e bioelettrici sia nervosi che cardiaci. Lo studente acquisirà la capacità di procedere alla formulazione di modelli bio-fisiologici complessi. Obiettivo del corso è di fornire gli strumenti concettuali e metodologici di tipo sia analitico che numerico in modo che lo studente acquisisca le competenze necessarie per affrontare l’analisi qualitativa e quantitativa di modelli complessi e l’ínterpretazione dei risultati della loro simulazione numerica.

Programma del corso

Il corso si propone di introdurre lo studente ad alcune problematiche relative alla modellizzazione matematica e simulazione di fenomeni fisiologoci ( elettrofisiologia cellulare, fenomeni di reazione-diffusione, processi bioelettrici nervosi e cardiaci) fornendo gli strumenti concettuali e metodologici sia analitici che numerici.

Modelli della fisiologia cellulare:
Reazioni biochimiche, cinetica enzimatica, legge di Michaelis-Menten, approssimazione quasi-stazionaria, fenomeni cooperativi, effetti di attivazione, inibizione e di autocatalisi.

Elettrofisiologia cellulare:
Membrana cellulare: diffusione e trasporto attivo.

  • Potenziale transmembranario, elettrodiffusione, potenziale di equilibrio di Nernst
  • Dinamica delle correnti ioniche di membrana, modelli di canali ionici a subunità multiple, formalismo di Hodgkin-Huxley.
  • Modelli con due variabili: analisi qualitativa: effetto soglia, eccitabilità e cicli limite.
  • Modelli con due variabili: analisi qualitativa: effetto soglia, eccitabilità e cicli limite.
  • Modello di FitzHugh-Nagumo.
  • Modello di Hodgkin-Huxley per la descizione del potenziale d'azione .
  • Modello di Morris-Lecar.
  • Utilizzo di XPPAUT per il tracciamento dei diagrammi di biforcazione: modello FHN, modello di Morris -Lecar, modelli di tipo attivatore-inibitori e di tipo biochimico.
  • Modello di Hodgkin-Huxley: effetto threshold, effetto di refrattarità.
  • Diagramma di biforcazione del Modello di Hodgklin-Huxley.

Introduzione ai sistemi di reazione-diffusione
Leggi di bilancio, equazione di diffusione. Termini reattivi,chemotattici e di trasporto. Condizioni iniziali ed al contorno. Cenni sull' approssimazione numerica di problemi di evoluzione

Introduzione alla propagazione in mezzi eccitabili
Modello del cavo eccitabile: bidominio e monodominio. Accoppiamento cellulare: omogeneizzazione di un assemblaggio di cellule. Equazioni bistabili e soluzioni di tipo traveling wave

Modelli matematici in elettrocardiologia
Modello macroscopico del tessuto cardiaco: mezzo eccitabile anisotropo con rapporti di anisotropia diversi per il mezzo intra ed extracellulare. Modello bidominio anisotropo per l'attivita` bioelettrica cardiaca.

  • Stimolazione catodica e anodica del tessuto cardiaco: elettrodi di polarizzazione virtuale.
  • Origine dell' eccitazione e formazione e struttura dei fronte di eccitazione cardiaca.
  • Caratteristiche della sua propagazione e modello del moto del fronte di eccitazione.
  • Struttura macroscopica delle sorgenti cardiache.
  • Struttura del campo di potenziale extracellulare ed extracardiaco.
  • Morfologia degli elettrogrammi e elettrocardiogrammi.

Prerequisiti

I corsi di matematica della laurea triennale. Il corso di Sistemi dinamici: teoria e metodi numerici.

Tipologia delle attività formative

Lezioni (ore/anno in aula): 45
Esercitazioni (ore/anno in aula): 0
Attività pratiche (ore/anno in aula): 0

Materiale didattico consigliato

F. Britton. Essential Mathematical Biology.. Springer-Verlag, Heidelberg, 2003. .

J.P. Keneer, J. Sneyd. Mathematical Physiology I: Cellular Physiology. Springer-Verlag, New York, 2009.

J.P. Keneer, J. Sneyd. Mathematical Physiology II: System Physiology. Springer-Verlag, New York, 2009.

Cabo C., Rosenbaum D. S.. Quantitative Cardiac Elctrophysiology. Marcel Dekker, Inc., newYork, 2002. Part one, chapters: 1,2,3,6..

Modalità di verifica dell'apprendimento

Commento e discussione dei risultati delle esercitazioni di laboratorio. e prova orale sugli argomenti del programma dettagliato del corso.

Copyright © Facoltà di Ingegneria - Università di Pavia