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1 Introduction

The traditional way of conceiving heterogeneity among individuals in Economics has been

to think of income inequality, that is, individuals’ differences in the command over eco-

nomic resources. Many contributions have estimated the effects of inequality on all sorts

of outcomes, and the literature on the measurement of inequality has proceeded on a par-

allel path, advancing to substantial degrees of sophistication. In recent times there has

been a growing interest within Economics in the role that other types of heterogeneity,

namely ethnic or cultural diversity, play in explaining socio-economic outcomes. A num-

ber of empirical studies have found that ethnic diversity is associated with lower growth

rates (Easterly and Levine, 1997), more corruption (Mauro, 1995), lower contributions to

local public goods (Alesina, Baqir and Easterly, 1999), lower participation in groups and

associations (Alesina and La Ferrara, 2000) and a higher propensity to form jurisdictions

to sort into homogeneous groups (Alesina, Baqir and Hoxby, 2004). For an extensive

review of these and other contributions on the relationship between ethnic diversity and

economic performance, see Alesina and La Ferrara (2005). Yet the literature on the mea-

surement of ethnic – and other forms of non-income related – heterogeneity has received

considerably less attention.

The measure of ethnic diversity used almost universally in the empirical literature

is the so-called index of ethno-linguistic fractionalization (ELF ), which is a decreasing

transformation of the Herfindahl concentration index. In particular, if we consider a

society composed of K ≥ 2 different ethnic groups and let pk indicate the share of group
k in the total population, the resulting value of the ELF index is given by

1−
KX
k=1

p2k.

The popularity of this index in empirical applications can be attributed to two features.

First, it is extremely simple to compute frommicro as well as from aggregate data: all that

is needed is the vector of shares of the various groups in the population. Second, ELF

has a very intuitive interpretation: it measures the probability that two randomly drawn

individuals from the overall population belong to different ethnic groups. On the other

hand, the economic underpinnings for the use of this index seem underdeveloped. One of

the few contributions that address this issue is Vigdor (2002), who proposes a behavioral

interpretation of ELF in a model where individuals display differential altruism. He

assumes that an individual’s willingness to spend on local public goods depends partly

on the benefits that other members of the community derive from the good, and that
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the weight of this “altruistic” component varies depending on how many members of the

community share the same ethnicity of that individual.

The implicit contention is often that different ethnic groups may have different pref-

erences, and this would generate conflicts of interests in economic decisions. If this is

the rationale for including ethnic diversity effects, then measuring diversity purely as a

function of population shares seems a severe limitation. Presumably, people of differ-

ent ethnicities will feel differently about each other depending on how similar they are.

Similarity between groups could depend, for example, on other dimensions such as in-

come, educational background, employment status, just to mention a few. If preferences

might be induced by these other individual characteristics, then considering similarities

between ethnic groups will give a better understanding of the potential conflict in eco-

nomic decisions. Providing a measure of “fractionalization” that accounts for the degree of

similarity among ethnic groups (for instance, similarity according to other characteristics)

seems therefore a useful task.

The goal of this paper is to characterize a generalized ethno-linguistic fractionaliza-

tion index (GELF ) that combines information on population shares with information on

similarities among groups. We show that the generalized index is a natural extension of

ELF and is also simple to compute. The paper offers some empirical illustrations on how

GELF can be operationalized and what difference it makes as compared to the standard

ELF index. These applications pertain to the pattern of ethnic diversity in the United

States across states and over time. To our knowledge, this is the first attempt to propose

a multi-dimensional fractionalization index. A similar aim drives Desmet, Ortuño-Ortín

and Weber (2005). We will discuss the differences between the two approaches in the next

paragraphs.

In the characterization we choose to be as general as possible and do not impose the

group partition from the outset. In the discussion, though, we refer to ethnic groups to

be in line with the strand of the literature to which we aim at contributing. Similarly,

the empirical application makes use of these ethnic groups for comparison’s purposes with

more standard indices. But the way we think of the problem to be modelled is without such

partition. Our reasoning proceeds as follows: imagine a society composed of individuals

with personal characteristics, whatever they could be. Pick any two individuals, they

could be perfectly identical according to the analized characteristics, completely dissimilar

or similar to different degrees. For simplicity, normalize the similarity values to be in the

interval [0, 1] and assign the value one to perfect similarity, zero to maximum dissimilarity.

Imagine to make these comparisons for all the possible couples of individuals. If the society
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is composed of n individuals, the comparison process will generate n2 similarity values.

Stuck all those values in a matrix, the similarity matrix, where in each raw is contained the

similarity value of one given individual with respect to all the others. Naturally, the main

diagonal of such a matrix will have all entries equal to one — each individual is perfectly

identical to itself; at the same time the matrix will be symmetric — the similarity value

between, say, individual i and j, is equal to that between j and i. What is then a groups

in this framework? Individuals belonging to the same group are identical in all respects.

In our setting they have a similarity value of one among themselves and present the same

degree of similarity with respect to all other individuals. With this process the group

partition will emerge naturally from the similarity matrix without having to impose it in

advance.

The generalized index that we are proposing could be applied to various areas in

Economics. It is, indeed, an index of diversity, the complement to one of an index of

concentration. And as the Herfindahl concentration index has a widespread use in areas

spanning from academic research to antitrust regulation, so could be the complement

to one of GELF . For example, since 1992 the US Department of Justice has used the

Herfindahl index as a measure of market concentration to enforce antitrust regulation.

According to the DOJ Horizontal Merger Guidelines of 1992, markets with an index of

0.18 or more should be considered “concentrated”.

Our paper is related to several strands of the literature. First, it naturally relates to

the above mentioned literature on ethnic diversity and its economic effects. While the bulk

of this literature does not focus on the specific issue of measurement, a few contributions

do. As the majority of applications have used language as a proxy for ethnicity, some

authors have criticized the use of ELF on the grounds that linguistic diversity may not

correspond to ethnic diversity. Among these, Alesina, Devleeschauwer, Easterly, Kurlat

and Wacziarg (2003) have proposed a classification into groups that combines information

on language with information on skin color. Note that this approach differs from ours

because it aggregates information on the two dimensions ex ante, that is, it directly defines

ethnic categories on the basis of two criteria (language and skin color) and then applies

the ELF formula to the resulting number of groups. The relationship between this type

of approach and ours is discussed more in depth in Subsection 2.3 below. Other authors,

in particular Fearon (2003), have criticized standard applications of ELF on the grounds

that they would fail to account for the salience of ethnic distinctions in different contexts.

For example, the same two ethnic groups may be allies in one country and opponents

in another, and using simply their shares in the population would fail to capture this.
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We share Fearon’s concerns on this point, and indeed we hope that our index can be a

first step towards incorporating issues of salience in the measurement of diversity, albeit

in a simplistic way. In particular, if one thinks that differences in income, or education,

or any other measurable characteristic may be the reason why ethnicity matters only in

certain contexts, our GELF index already “weighs” ethnic categories by their salience.

Turning to the notion of “distance” among ethnic groups, relatively little has been done.

Using a heuristic approach, Laitin (2000) and Fearon (2003) rely on measures of distance

between languages to assess how different linguistic groups are across countries. Caselli

and Coleman (2002) stress the importance of ethnic distance in a theoretical model and

propose to measure it using surveys of anthropologists.

Second, the paper relates to the literature on ethnic polarization. Montalvo and

Reynal-Querol (2005) proposed an index of ethnic polarization, RQ, as a more appropriate

measure of conflict than ELF itself. RQ aims at capturing how far is the distribution

of the ethnic groups from the bipolar distribution, which represents the highest level of

polarization. The authors also show that this index is highly correlated with ELF at low

levels, uncorrelated at intermediate levels and negatively correlated at high levels. Desmet,

Ortuño-Ortín and Weber (2005) focus on ethno-linguistic conflict that arises between a

dominant central group and peripheral minority groups. To this aim the authors propose

an index of peripheral ethno-linguistic diversity, PD, which can capture both the notion

of diversity and of polarization. We will discuss the differences between the indices in

Subsection 2.3.

Third, the measurement of diversity has been formally analyzed in different contexts

as well. For example, Weitzman (1992) suggests an index that is primarily intended to

measure biodiversity. Moreover, the measurement of diversity has become an increasingly

important issue in the recent literature on the ranking of opportunity sets in terms of

freedom of choice, where opportunity sets are interpreted as sets of options available to

a decision maker. Examples for such studies include Pattanaik and Xu (2000), Nehring

and Puppe (2002) and Bossert, Pattanaik and Xu (2003). A fundamental difference

between the above-mentioned contributions and the approach followed in this paper is

the informational basis employed which results in a very different set of axioms that

are suitable for a measure of diversity. Both Weitzman’s (1992) seminal paper and the

literature on incorporating notions of diversity in the context of measuring freedom of

choice proceed by constructing a ranking of sets of objects (interpreted as sets of species

in the case of biodiversity and as sets of available options in the context of freedom of

choice), whereas we operate in an informationally richer environment: not only whether
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or not a group is present may influence the measure of diversity, but also the relative

population shares of these groups along with the pairwise similarities among them.

The remainder of the paper is organized as follows. Section 2 contains our main

theoretical results, namely, the axiomatic characterization of GELF . Section 3 provides

some empirical illustrations of the different measures. Section 4 concludes with a summary

of our results and possible extensions.

2 Similarity and fractionalization

In this section we propose a characterization of ELF and of its generalizations that take

into account degrees of similarity between groups and individuals.

Let N denote the set of positive integers and R the set of all real numbers. The

set of all non-negative real numbers is R+ and the set of positive real numbers is R++.
For n ∈ N \ {1}, Rn is Euclidean n-space and ∆n is the n-dimensional unit simplex.

Furthermore, 0n is the vector consisting of n zeroes. A similarity matrix of dimension

n ∈ N \ {1} is an n× n matrix S = (sij)i,j∈{1,...,n} such that:

(a) sij ∈ [0, 1] for all i, j ∈ {1, . . . , n};
(b) sii = 1 for all i ∈ {1, . . . , n};
(c) [sij = 1 ⇒ sik = skj] for all i, j, k ∈ {1, . . . , n}.

The three restrictions on the elements of a similarity matrix have very intuitive inter-

pretations. (a) is consistent with a normalization requiring that complete dissimilarity is

assigned a value of zero and full similarity is represented by one. Clearly, this requires

that each individual has a similarity value of one when assessing the similarity to itself,

as stipulated in (b). Finally, (c) requires that if two individuals are fully similar, it is

not possible to distinguish between them as far as their similarity to others is concerned.

Because i = j is possible in (c), the conjunction of (b) and (c) implies that a similarity

matrix is symmetric, a self-evident requirement. Finally, (c) implies that full similarity

is transitive in the sense that, if sij = sji = sjk = skj = 1, then sik = ski = 1 for all

i, j, k ∈ {1, . . . , n}.
Let Sn be the set of all n-dimensional similarity matrices, where n ∈ N \ {1}. We use

In to denote the n × n identity matrix and 1n to denote the n × n matrix all of whose

entries are equal to one. Clearly, both of these matrices are in Sn, and they represent

extreme cases within this class. In can be thought of as having maximal diversity: any
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two individuals are completely dissimilar and, therefore, each individual is in a group

by itself. 1n, on the other hand, represents maximal concentration (and, thus, minimal

diversity) because there is but a single group in the population all members of which are

fully similar.

We let S = ∪n∈N\{1}Sn, and a diversity measure is a function D : S → R+. The
measure we suggest in this paper is what we call the generalized ethno-linguistic fraction-

alization (GELF ) index G. It is defined by

G(S) = 1− 1

n2

nX
i=1

nX
j=1

sij

for all n ∈ N \ {1} and for all S ∈ Sn (or any positive multiple; clearly, multiplying the

index value by α ∈ R++ leaves all diversity comparisons unchanged).
As an example, suppose a three-dimensional similarity matrix is given by

S =

⎛⎜⎝ 1 1/2 1/4

1/2 1 0

1/4 0 1

⎞⎟⎠ .

The corresponding value of G is given by

G(S) = 1− 1
9

∙
1 +

1

2
+
1

4
+
1

2
+ 1 + 0 +

1

4
+ 0 + 1

¸
= 1− 1

2
=
1

2
.

Before providing a characterization of our new index, we illustrate that it is indeed

a generalization of the commonly-employed ethno-linguistic fractionalization (ELF ) in-

dex. The application of ELF is restricted to an environment where the only information

available is the vector p = (p1, . . . , pK) ∈ ∆K of population shares for K ∈ N predefined
groups. No partial similarity values are taken into consideration–individuals are either

fully similar or completely dissimilar, that is sij can assume uniquely the values one and

zero respectively. Letting ∆ = ∪K∈N∆K , the ELF index E : ∆→ R+ is defined by letting

E(p) = 1−
KX
k=1

p2k

for all K ∈ N and for all p ∈ ∆K . Thus, ELF is one minus the well-known Herfindahl

index of concentration.

In our setting, ELF environment can be described by a subset S01 = ∪n∈N\{1}Sn
01

of our class of similarity matrices where, for all n ∈ N \ {1}, for all S ∈ Sn
01 and for

all i, j ∈ {1, . . . , n}, sij ∈ {0, 1}. By properties (b) and (c), it follows that, within this
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subclass of matrices, the population {1, . . . , n} can be partitioned into K ∈ N non-empty
and disjoint subgroups N1, . . . , NK with the property that, for all i, j ∈ {1, . . . , n},

sij =

(
1 if there exists k ∈ {1, . . . ,K} such that i, j ∈ Nk;

0 otherwise.

Letting nk ∈ N denote the cardinality of Nk for all k ∈ {1, . . . ,K}, it follows thatPK
k=1 nk = n and pk = nk/n for all k ∈ {1, . . . , K}. For n ∈ N \ {1} and S ∈ Sn

01, we

obtain

G(S) = 1− 1

n2

KX
k=1

n2k = 1−
KX
k=1

p2k = E(p).

For example, suppose that

S =

⎛⎜⎝ 1 1 0

1 1 0

0 0 1

⎞⎟⎠ ,

that is we are analyzing a society composed of three individuals, two of which fully similar

— hence belonging to the same group — the latter being completely dissimilar to everybody.

The corresponding value of G is given by

G(S) = 1− 1
9
[1 + 1 + 0 + 1 + 1 + 0 + 0 + 0 + 1] = 1− 5

9
=
4

9
.

Because S ∈ S301, we can alternatively calculate this diversity value using ELF . We have
K = 2, N1 = {1, 2}, N2 = {3}, p1 = 2/3 and p2 = 1/3. Thus,

E(p) = 1−
"µ
2

3

¶2
+

µ
1

3

¶2#
= 1− 5

9
=
4

9
= G(S).

A second special case allows us to obtain population subgroups endogenously from

similarity matrices even if similarity values can assume values other than zero and one.

To do so, we define a partition of {1, . . . , n} into K ∈ N non-empty and disjoint sub-

groups N1, . . . , NK. By properties (b) and (c), these subgroups are such that, for all

k ∈ {1, . . . , K}, for all i, j ∈ Nk and for all h ∈ {1, . . . , n}, sij = sji = 1 and sih = shi =

shj = sjh. Thus, for all k, c ∈ {1, . . . , K}, we can unambiguously define vkc = sij for some

i ∈ Nk and some j ∈ Nc. Again using nk ∈ N to denote the cardinality of Nk for all

k ∈ {1, . . . , K}, it follows that
PK

k=1 nk = n and pk = nk/n for all k ∈ {1, . . . , K}. For
n ∈ N \ {1} and S ∈ Sn, we obtain

G(S) = 1− 1

n2

KX
k=1

KX
c=1

nkncvkc = 1−
KX
k=1

KX
c=1

pkpcvkc.
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Clearly, the ELF index E is obtained for the case where all off-diagonal entries of S are

equal to zero.

For example, let

S =

⎛⎜⎝ 1 1 1/2

1 1 1/2

1/2 1/2 1

⎞⎟⎠ ,

that is we are analyzing a society composed of three individuals, two of which fully similar

— hence belonging to the same group — the latter being partially, 1
2
to be precise, similar

to everybody. The corresponding index value is

G(S) = 1− 1
9

∙
1 + 1 +

1

2
+ 1 + 1 +

1

2
+
1

2
+
1

2
+ 1

¸
= 1− 7

9
=
2

9
.

According to the method outlined above, we can alternatively partition the population

{1, 2, 3} into two groups N1 = {1, 2} and N2 = {3}. The population shares of these
groups are p1 = 2/3 and p2 = 1/3. We obtain the intergroup similarity values v11 = v22 =

s11 = s22 = s12 = s21 = 1 and v12 = v21 = si3 = s3i = 1/2 for i ∈ {1, 2}, which leads to
the index value

G(S) = 1− 1
9

"µ
2

3

¶2
+

µ
1

3

¶2
+
2

3
· 1
3
· 1
2
+
2

3
· 1
3
· 1
2

#
= 1− 7

9
=
2

9
.

We now turn to a characterization of GELF . Our first axiom is a straightforward

normalization property. It requires that the value of D at 1n is equal to zero and the

value of D at In is positive for all n ∈ N\{1}. Given that the matrix 1n is associated with
minimal diversity, it is a very plausible restriction to require that D assumes its minimal

value for these matrices. Note that this minimal value is the same across population sizes.

This is plausible because, no matter what the population size n might be, there is but

a single group of perfectly similar individuals and, thus, there is no diversity at all. In

contrast, it would be much less natural to require that the value of D at In be identical

for all population sizes n. It is quite plausible to argue that having more distinct groups

each of which consists of a single individual leads to more diversity than a situation where

there are fewer groups containing one individual each. Thus, we obtain the following

axiom.

Normalization. For all n ∈ N \ {1},

D(1n) = 0 and D(In) > 0.
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Our second axiom is very uncontroversial as well. It requires that individuals are

treated impartially, paying no attention to their identities. For n ∈ N \ {1}, let Πn be the

set of permutations of {1, . . . , n}, that is, the set of bijections π : {1, . . . , n}→ {1, . . . , n}.
For n ∈ N \ {1}, S ∈ Sn and π ∈ Πn, Sπ is obtained from S by permuting the rows

and columns of S according to π. Anonymity requires that D is invariant with respect to

permutations.

Anonymity. For all n ∈ N \ {1}, for all S ∈ Sn and for all π ∈ Πn,

D(Sπ) = D(S).

Many social index numbers have an additive structure. Additivity entails a separability

property: the contribution of any variable to the overall index value can be examined in

isolation, without having to know the values of the other variables. Thus, additivity

properties are often linked to independence conditions of various forms. The additivity

property we use is standard except that we have to respect the restrictions imposed by

the definition of Sn. In particular, we cannot simply add two similarity matrices S and T

of dimension n because, according to ordinary matrix addition, all entries on the diagonal

of the sum S + T will be equal to two rather than one and, therefore, S + T is not an

element of Sn. For that reason, we define the following operation ⊕ on the sets Sn by

letting, for all n ∈ N \ {1} and for all S, T ∈ Sn, S ⊕ T = (sij ⊕ tij)i,j∈{1,...,n} with

sij ⊕ tij =

(
1 if i = j;

sij + tij if i 6= j.

The standard additivity axiom has to be modified in another respect. Because the diagonal

is unchanged when moving from S and T to S ⊕ T , it would be questionable to require

the value of D at S ⊕ T to be given by the sum of D(S) and D(T ) because, in doing so,

we would double-count the diagonal elements in S and in T . Therefore, this sum has to

be corrected by the value of D at In, and we obtain the following axiom.

Additivity. For all n ∈ N \ {1} and for all S, T ∈ Sn such that (S ⊕ T ) ∈ Sn,

D(S ⊕ T ) = D(S) +D(T )−D(In).

With the partial exception of the normalization condition (which implies that our di-

versity measure assumes the same value for the matrix 1n for all population sizes n), the
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first three axioms apply to diversity comparisons involving fixed population sizes only.

Our last axiom imposes restrictions on comparisons across population sizes. We consider

specific replications and require the index to be invariant with respect to these replica-

tions. The scope of the axiom is limited to what we consider clear-cut cases and, therefore,

represents a rather mild variable-population requirement. In particular, consider the n-

dimensional identity matrix In. As argued before, this matrix represents an extreme

degree of diversity: each individual is in a group by itself and shares no similarities with

anyone else. Now consider a population of size nm where there are m copies of each

individual i ∈ {1, . . . , n} such that, within any group of m copies, all similarity values are

equal to one and all other similarity values are equal to zero. Thus, this particular repli-

cation has the effect that, instead of n groups of size one that do not have any similarity

to other groups, now we have n groups each of which consists of m identical individuals

and, again, all other similarity values are equal to zero. As before, the population is

divided into n homogeneous groups of equal size. Adopting a relative notion of diversity,

it would seem natural to require that diversity has not changed as a consequence of this

replication. To provide a precise formulation of the resulting axiom, we use the following

notation. For n,m ∈ N \ {1}, we define the matrix Rn
m = (rij)i,j∈{1,...,nm} ∈ Snm by

rij =

(
1 if ∃h ∈ {1, . . . , n} such that i, j ∈ {(h− 1)m+ 1, . . . , hm};
0 otherwise.

Now we can define our replication invariance axiom.

Replication invariance. For all n,m ∈ N \ {1},

D(Rn
m) = D(In).

These four axioms characterize GELF .

Theorem 1 A diversity measure D : S → R+ satisfies normalization, anonymity, addi-
tivity and replication invariance if and only if D is a positive multiple of G.

Proof. That any positive multiple of G satisfies the axioms is straightforward to verify.

Conversely, suppose D is a diversity measure satisfying normalization, anonymity, addi-

tivity and replication invariance. Let n ∈ N \ {1}, and define the set X n ⊆ Rn(n−1)/2

by

X n = {x = (xij) i∈{1,...,n−1}
j∈{i+1,...,n}

| ∃S ∈ Sn such that sij = xij for all i ∈ {1, . . . , n− 1}
and for all j ∈ {i+ 1, . . . , n}}.
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Define the function F n : X n → R by letting, for all x ∈ X n,

Fn(x) = D(S)−D(In) (1)

where S ∈ Sn is such that sij = xij for all i ∈ {1, . . . , n−1} and for all j ∈ {i+1, . . . , n}.
This function is well-defined because S contains symmetric matrices with ones on the
main diagonal only. Because D is bounded below by zero, it follows that F n is bounded

below by −D(In). Furthermore, the additivity of D implies that Fn satisfies Cauchy’s

basic functional equation

F n(x+ y) = F n(x) + F n(y) (2)

for all x, y ∈ X n such that (x + y) ∈ X n; see Aczél (1966, p. ??). We have to address a

slight complexity in solving this equation because the domain X n of Fn is not a Carte-

sian product, which is why we provide a few further details rather than invoking the

corresponding standard result immediately.

Fix i ∈ {1, . . . , n − 1} and j ∈ {i + 1, . . . , n}, and define the function fnij : [0, 1] → R
by

fnij(xij) = F n(xij ;0
n(n−1)/2−1)

for all xij ∈ [0, 1], where the vector (xij ;0n(n−1)/2−1) is such that the component corre-
sponding to ij is given by xij and all other entries (if any) are equal to zero. Note that

this vector is indeed an element of X n and, therefore, fnij is well-defined. The function f
n
ij

is bounded below because F n is and, as an immediate consequence of (2), it satisfies the

Cauchy equation

fnij(xij + yij) = fnij(xij) + fnij(yij) (3)

for all xij , yij ∈ [0, 1] such that (xij + yij) ∈ [0, 1]. Because the domain of fnij is an interval
and fnij is bounded below, the only solutions to (3) are linear functions; see Aczél (1987,

p. ??). Thus, there exists cnij ∈ R such that

F n(xij;0
n(n−1)/2−1) = fnij(xij) = cnijxij (4)

for all xij ∈ [0, 1].
Let S ∈ Sn. By additivity, the definition of F n and (4),

F n
³
(sij) i∈{1,...,n−1}

j∈{i+1,...,n}

´
=

n−1X
i=1

nX
j=i+1

F n(sij ;0
n(n−1)/2−1) =

n−1X
i=1

nX
j=i+1

fnij(sij) =
n−1X
i=1

nX
j=i+1

cnijsij

and, defining dn = D(In) and substituting into (1), we obtain

D(S) =
n−1X
i=1

nX
j=i+1

cnijsij + dn. (5)
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Now fix i, k ∈ {1, . . . , n− 1}, j ∈ {i+1, . . . , n} and c ∈ {k+1, . . . , n}, and let S ∈ Sn

be such that sij = sji = 1 and all other off-diagonal entries of S are equal to zero. Let

the bijection π ∈ Πn be such that π(i) = k, π(j) = c, π(k) = i, π(c) = j and π(h) = h for

all h ∈ {1, . . . , n} \ {i, j, k, c}. By (5), we obtain

D(S) = cnij + dn and D(Sπ) = cnkc + dn,

and anonymity implies cnij = cnkc. Therefore, there exists c
n ∈ R such that cnij = cn for all

i ∈ {1, . . . , n− 1} and for all j ∈ {i+ 1, . . . , n}, and substituting into (5) yields

D(S) = cn
n−1X
i=1

nX
j=i+1

sij + dn

for all n ∈ N \ {1} and for all S ∈ Sn.

Normalization requires

D(1n) = cn
n(n− 1)

2
+ dn = 0

and, therefore, dn = −cnn(n − 1)/2 for all n ∈ N \ {1}. Using normalization again, we
obtain

D(In) = −cnn(n− 1)
2

> 0

which implies cn < 0 for all n ∈ N \ {1}. Thus,

D(S) = cn
n−1X
i=1

nX
j=i+1

sij − cn
n(n− 1)

2
(6)

for all n ∈ N \ {1} and for all S ∈ Sn.

Let n be an even integer greater than or equal to four. By replication invariance and

(6),

D(R2n/2) = cn
n

2

³n
2
− 1
´
− cn

n(n− 1)
2

= −c2 = D(I2).

Solving, we obtain

cn = 4
c2

n2
. (7)

Now let n be an odd integer greater than or equal to three. Thus, q = 2n is even, and

the above argument implies

cq = 4
c2

q2
=

c2

n2
. (8)

Furthermore, replication invariance requires

D(Rn
2 ) = D(R

q/2
2 ) = cq

q

2
− cq

q(q − 1)
2

= −cnn(n− 1)
2

= D(In).

12



Solving for cn and using the equality q = 2n, it follows that cn = 4cq and, combined with

(8), we obtain (7) for all odd n ∈ N \ {1} as well.
Substituting into (6), simplifying and defining α = −2c2 > 0, it follows that, for all

n ∈ N \ {1} and for all S ∈ Sn,

D(S) = 4
c2

n2

n−1X
i=1

nX
j=i+1

sij − 2
c2

n2
n(n− 1)

= 2
c2

n2

nX
i=1

nX
j=1
j 6=i

sij − 2c2 + 2
c2

n

= −2c2

⎡⎢⎣1− 1

n2

nX
i=1

nX
j=1
j 6=i

sij −
1

n

⎤⎥⎦
= −2c2

"
1− 1

n2

nX
i=1

nX
j=1

sij

#
= αG(S).

2.1 Discussion

In this section we discuss the differences between GELF and related indices proposed

in the literature, namely the indices of ethno-linguistic fractionalization (ELF ), ethinic

polarization (RQ), peripheral diversity (PD). ELF can be interpreted as one minus a

weighted sum of population shares pi, where the weights are these shares themselves.

GELF is based on a natural generalization of that idea. In the presence of similarities

among different individuals belonging to different groups, the weight assigned to pi should

not be merely pi itself but the similarities of individuals in group i to the individuals in

other groups should be taken into consideration as well when constructing these weights.

In GELF each individual counts in two capacities. Through its membership in its own

group, an individual contributes to the population share of the group. In addition, there

is a secondary contribution via the similarities to individuals of other groups.

The index of ethnic polarization RQ (see Montalvo and Reynal-Querol, 2005) shares

a structure similar to that of ELF and of GELF :

RQ = 1−
KX
k=1

µ
1/2− pk
1/2

¶2
pk

for all p ∈ ∆. As is the case for ELF and GELF , RQ employs a weighted sum of

population shares. The weights employed in RQ capture the deviation of each group
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from the maximum polarization share 1/2 as a proportion of 1/2. As is the case for

ELF , underlying that formula is the implicit assumption that any two groups are either

completely similar or completely dissimilar and, thus, the weights depend on population

shares only.

The index of peripheral diversity PD (see Desmet, Ortuño-Ortín and Weber, 2005)

is a specification of the original Esteban and Ray (1994) polarization index. It is derived

from the alienation-identification framework proposed by Esteban and Ray (1994), applied

to distances between language spoken — as opposed to income distances of the original

contribution — and distinguishing between the effective alienation felt by the dominant

group and that of the minorities. In particular, written in the setting of our paper, the

index has the following expression:

PD =
KX
k=1

£
p1+αk (1− s0k) + pkp

1+α
0 (1− s0k)

¤
,

where α is a parameter indicating the importance given to the identification component, 0

is the dominant group and the other K are minority groups. When α < 0 PD is an index

of peripheral diversity, otherwise, when α > 0, PD is an index of peripheral polarization.

The structure of this index is different from that of the previous ones. As GELF it

does incorporate a notion of dissimilarity between groups, given by the complement to

one of the similarity value. On the other hand, as opposed to the previous indices, the

identification component plays a crucial role enhancing (when α > 0) or diminishing (when

α > 0) the alienation produced by distances between groups. The additional difference

with the other indices discussed in this section is the dinstinction between the dominant

groups and the minorities.

SHALL WE DELETE WHAT IS BELOW HERE UP TO
THE END OF THE PARAGRAPH? I WOULD DO IT. Suppose
we have information on two characteristics of the population, say, ethnicity and income,

and assume for simplicity that there are only two ethnic groups A and B and two income

classes H (for high) and L (for low). GELF allows us to use one characteristic to con-

struct population shares and another characteristic to compute a “similarity value” that

will then be used as a weight. In doing so, an asymmetric structure can be imposed be-

cause the dimension of primary interest (the one on which shares are computed) needs to

be selected on a priori grounds. An alternative approach would be to use both dimensions

in a symmetric way and define “raw groups” based on the intersection of the different di-

mensions (as proposed by Alesina, Devleeschauwer, Easterly, Kurlat and Wacziarg, 2003).
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In the above example, we would have four groups: AH, AL, BH, BL, and on these finer

partition we could compute the standard ELF index. We find the latter approach less

advantageous compared to ours in the sense that it imposes independence across the re-

sulting set of groups. In particular, in computing ELF the raw groups AH and AL would

be treated as “different” in the same way as AH and BL are. This seems undesirable

because AH and AL share the same ethnicity, while AH and BL do not share any of

the two dimensions. Our approach does not imply this type of independence across all

dimensions.

The application of GELF is not restricted to situations where the similarity values

are given by a second characteristic–any definition of the notion of similarity can be

accommodated.

3 Empirical illustrations

In this section we provide an application of GELF to the pattern of ethnic diversity in

the United States across states and over time.

The data sets used are the March Supplement of the Current Population Survey (CPS),

and the 1990 Census. From the CPS we only use the years from 1989 to 1995 because

of changes in the classification of ethnicity before and after this interval. Although the

resulting picture may only be representative of the pattern of ethnic diversity in the US in

the Nineties, the advantage of our choice is that in this time framework we have the moste

detailed disaggregation available into racial groups. In particular, both in the CPS and

in the Census the population is divided into five racial groups: (i) White; (ii) Black; (iii)

American Indian, Eskimo or Aleutian; (iv) Asian or Pacific Islander; and (v) Other. The

last category includes any other race except the four mentioned. For these years the CPS

and the Census do not identify Hispanic as a separate racial category. However, Alesina,

Baqir and Easterly (1999), who construct ELF from the same five categories, have verified

that the category Hispanic (obtained from a different source) has a correlation of more

than 0.9 with the category Other in the Census data.

We analyze different dimensions of similarity across ethnic groups: household income,

education and employment status of the head of the household. We use the two data

sources to exploit their comparative advantage in terms of cross-sectional versus time-

series coverage. In particular, using Census data, we explore differences across states

and we illustrate applications in which aggregate data on mean characteristics are avail-

able. Using the CPS, on the other hand, we analyze trends in diversity over time and we
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illustrate a methodology that requires the availability of the entire distribution of charac-

teristics, as is typically the case with individual survey data. We do not rely on the CPS

for analyzing cross-states differences because of the small sample size of certain racial

groups in several states.

3.1 GELF and similarity of distributions

The household income series from the CPS allows us to explore in detail the similarity

among racial groups in this respect. We first estimate non-parametrically the distributions

of household income by race. In particular, the estimation method applied in the paper

is derived from a generalization of the kernel density estimator to take into account the

sample weights, θik, attached to each observation k in each group i, namely, from the

adaptive or variable kernel.

The adaptive kernel is built with a two-stage procedure: a density is determined in the

first stage in order to obtain the optimal bandwidth parameter; in the second stage, the

final density is computed for each race. The estimate of the density function of income

for each group i, bf i, is determined directly from the data {yi1, . . . , yiNi
} of the sample of

size Ni for group i, without assuming its functional form a priori. The only assumption

made is that there exists a density function f i from which the sample is extracted. More

precisely, the estimated density in the first stage is

ef i ¡yij¢ = NiX
k=1

θik
hNi

K

µ
yij − yik
hNi

¶
for all j ∈ {1, . . . ,Ni}, and the final estimate is

bf i ¡yij¢ = NiX
k=1

θik
hNiλ (y

i
k)
K

µ
yij − yik
hNiλ (y

i
k)

¶
for all j ∈ {1, . . . ,Ni}, where hNi is the bandwidth parameter, K is the kernel function,

λ
¡
yik
¢
=

( ef i (yik)
g

)− 1
2

and g is the geometric mean of ef i (yik). The sample weights are normalized to sum to one
so that

PNi

k=1 θ
i
k = 1.

With the estimated densities of household income by race, we measure the overlap

among them implying that two racial groups whose income distribution perfectly overlaps
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are considered perfectly similar. The measure of overlap of the income distributions

applied is the Kolmogorov measure of variation distance

Kovij =
1

2

Z ¯̄̄ bf i (y)− bf j (y)¯̄̄ dy.
The Kolmogorov measure of variation distance is a measure of the lack of overlap between

groups i and j. The value of Kovij is equal to zero if f i (y) = f j (y) for all y ∈ R and
equal to its maximum one if f i (y) and f j (y) do not overlap. The distance is sensitive

to changes in the distributions only when both take positive values, being insensitive to

changes whenever one of them is zero. It will not change if the distributions move apart,

provided that there is no overlap between them or that the overlapping part remains

unchanged. The resulting measure of similarity between any two groups i and j is

sij = 1−Kovij .

3.2 GELF and similarity of means

As a second step of our empirical application, we compute a crude measure of similarity

based on the expected value of the distribution of a second dimension analyzed. This

is to illustrate the performance of GELF in case of grouped data or poor availability of

information in the data set.

We can measure similarity with respect to continuous or to categorical variables. For

continuous variables such as household income, we indicate by λi the sample mean of the

distribution of income of group i, and by λ the overall sample mean. Then similarity

between any two groups i and j is

sij = 1−
¯̄̄̄
λi

λ
− λj

λ

¯̄̄̄
, (9)

where the difference between the groups is measured as the distance between the means

as a proportion of the overall mean to eliminate the effect that changes in the latter over

the years might have. When available, sample weights are used in the computation of the

sample means.

In cases where the absolute value of λi

λ
− λj

λ
in expression (9) is greater than one for

one or more pairs of groups, one can adopt a different normalization. In particular, denote

by λMax the maximum average income among all groups in all states, and by λMin the

minimum. Then we can compute sij alternatively as

sij = 1−
¯̄̄̄

λi − λj

(λMax − λMin)

¯̄̄̄
. (10)
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Note that expression (10) is bounded between zero and one by construction. In our

empirical illustrations, we employ the formula (9) when using CPS data and (10) when

using Census data. The reason is that taking Max and Min from individual pairwise

comparisons in the CPS would generate unrealistically large differentials, while using

mean values allows us to eliminate some noise. On the other hand, normalizing by mean

US income in the application that uses Census data would result in some differentials for

example, between Asian/Pacific Islanders and other groups in West Virginia) that are

greater than the average income in the US, hence in negative values for (9).

For education, we create a dummy variable that assumes the value one if the head

of the household has at least a high school degree (Education HS), respectively at least

a bachelor degree (Education BA). For employment, the value of the dummy variable is

one if the household head is not unemployed or not in the labor force (Employment 1),

respectively not unemployed (Employment 2). Indicating by δi the sample means of these

variables for group i, that is the share of the population assuming value one, similarity

between any two groups i and j is

sij = 1−
¯̄
δi − δj

¯̄
.

Again, sample weights are used in the computations for these variables.

3.3 Results

We discuss our results starting with computations based on the CPS and on the Kol-

mogorov measure of variation distance (for the case of income), and then turning to

Census data and to similarity of means.

[Insert Figures 1 to 4]

For the CPS, the results are presented in Figures 1 to 4. The values of the indices are

normalized to 100 in 1989 to facilitate the analysis of the pattern over time. In Figure 1

we plot all the indices together, including RQ, while in the following figures we isolate the

series depending on the additional characteristic analyzed. The indices based uniquely

on the population shares, ELF and RQ, show an increasing trend over time, steeper for

ELF . With GELF , the inclusion of the similarities has, in the majority of the cases, the

effect of changing the increasing trend to a flat one with a path exhibiting oscillations

around this stable trend.

Household income has a different influence on the pattern depending on the quality

of the measure of similarity computed. When the data allow the entire distribution of

18



income of the groups to be compared, as is the case of CPS with the Kolmogorov measure

of variation distance, we observe an oscillating path with the value in 1995 being almost

identical to the one at the beginning of the period. Mean income, on the other hand, is

very sensitive to extreme values and the changes of the minimum and maximum incomes

reported in the sample of the most numerous groups, namely white and black, have a

great impact on the index.

The results obtained with inclusion of employment status of the household head mimic

closely, in the first half of the period in particular, those obtained with income based on the

Kolmogorov measure of variation distance. Income reported in each year is the amount of

money received in the preceding calendar year, hence the downturn observed for income

in 1992 according to the Kolmogorov measure is contemporaneous of the downturn in

employment according to both series in 1991.

The characteristic that generates the path of GELF most similar to ELF (and RQ) is

Education BA, though with a somewhat higher variation around the increasing trend. Ed-

ucation HS, on the other hand, shares the same increasing trend, with a more pronounced

cycle.

[Insert Tables 1 to 3]

We next move to cross-states comparisons in our indices built from Census data. The

results are presented in Tables 1 to 3 for income, education and employment, respectively.

Table 1 lists the US states in decreasing order of the standard ELF index. According

to ELF, the five most fractionalized states are Hawaii, California, Washington DC, Mis-

sissippi and Louisiana; the five least fractionalized states are West Virginia, Iowa, New

Hampshire, Maine and Vermont. When we “correct” this index to account for similarity

in incomes, some of the rankings change dramatically. First of all, Hawaii moves from

the first to the 38th most fractionalized state; secondly, California moves from the 2nd

to the 11th position. In other words, while these states may be very diverse in terms of

pure racial shares, the distribution of income across races is relatively more equal than

elsewhere, and they turn out to be less fractionalized under GELF . States that decreas

in the ranking under GELF include New Mexico, Oregon and Washington State. On

the other hand, there are states that rank relatively low under ELF but move up the

ranking under GELF : the most notable example is Connecticut, going from the 26th

position under ELF to the 15th under GELF . Other notable cases include New Jersey

and Massachusetts.
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We then consider similarity in education (Table 2), as measured by the fraction of

people aged 25 and above with high school degree or more (columns 3 and 4) or bach-

elor’s degree and above (columns 5 and 6). Again, we see some states that become less

fragmented under GELF and some that become relatively more fragmented, but the re-

sults are sensitive to the threshold used for educational achievement. Among the states

that unambiguously become less fragmented under both measures of education are Ok-

lahoma and Kentucky; states that are unambiguously more fragmented, on the other

hand, include Illinois, Arizona, Connecticut, Colorado, Pennsylvania, Massachusetts and

Wyoming.

Finally, Table 3 reports results with respect to two measures of employment. Employ-

ment1 classifies as employed all the population above 16 but those “unemployed” or “not

in labor force”. Employment2 classifies as employed all the population above 16 except

those “unemployed”. Again, re-rankings among States are somewhat sensitive to the

definition adopted, but there are some clear patterns. States like California, Maryland

and Delaware are places where the incidence of unemployment among races is much more

similar than elsewhere, and their rank goes down when we considerGElF instead of ELF .

On the other hand, in states like Alaska, Illinois, Michigan, South Dakota, Montana and

North Dakota, racial differences are amplified by employment differentials.

4 Concluding remarks

— Summary of results.

The generalized ethno-linguistic fractionalization index characterized in the paper com-

bines information on population shares with information on similarities among groups.

The concept of similarity has not been derived in the theoretical section; we assume that

it is known to what degree any two groups are similar. In the application to the US

we choose as dimensions of similarities across ethnic groups household income, educa-

tion and employment status of the head of the household since we believe that these are

important aspects of the US economy that could influence the behaviour of individuals.

This need not necessarily be the case for other countries. For example, in less developed

countries, it might be more important to consider the amount of natural resources, the

quality of the land or a combination of characteristics. Allowing any possible concept of

similarity has the advantage of letting the researcher free to pick the most appropiate in

the context analyzed. In addition, and most importantly, our index allows to incorpo-

rate a multidimensional concept of similarity, as opposed to the single dimension of our
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application.

— Other applications: I.O. literature.
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