FACOLTA' DI INGEGNERIAUniversita' di Pavia
Home
  Teaching > Course1314 > Electromagnetic Fields and Circuits I Translate this page in English
About the Faculty
Orientation
Teaching
Research
Services
Industry partnerships
Mobility Erasmus
Shortcuts
Search in this site
Electromagnetic Fields and Circuits I

2012-13 Academic year

Lecturer: Luca Perregrini  

Course name: Electromagnetic Fields and Circuits I
Course code: 502506
Degree course: Ingegneria Elettronica e Informatica
Disciplinary field of science: ING-INF/02
The course relates to:
University credits: ECTS 9
Course website: http://microwave.unipv.it/pages/campi_circuiti_I/

Specific course objectives

Knowledge of the electrical quantities of interest in the study of the electric circuits and of their measurement units; knowledge of the behavior of two terminal elements and of their energy properties; knowledge of the circuit laws and of the linear circuit analysis methods; ability to solve simple circuits in DC, at low and high frequency, in resonant and transient conditions; knowledge of the basics of electromagnetic theory determining the behavior of electric circuits; knowledge of the wave propagation mechanism in transmission lines.

Course programme

Basic concepts and fundamental laws
Measurement unit system, electric charge and current, voltage, power and energy, circuit elements, Ohm's law, circuit topology, Kirchhoff laws, resistors connected in series and in parallel, voltage and current divider.

Analysis methods and circuit theorems
Node voltage method, mesh current method. Linearity, superposition, transformation of sources, Thevenin's theorem, Norton's theorem, maximum power transfer, equivalent model for real sources.

Capacitors and inductors
Theory of operation. Interconnection in series and in parallel.

First and second order circuits in transient regime
Transient analysis of RC and RL circuits: natural and forced response, initial and steady-state conditions, time constant. Transient analysis of RLC series and parallel circuits: initial and steady-state conditions, over-damped, critically damped, and under-damped response. General response of a first and second order circuit.

Electric circuits in alternate current regime
Sinusoidal functions and phasors, relationships between phasors for different circuit elements, impedance and admittance. Kirchhoff laws in frequency domain, combination of impedances, phase-shifting circuits, AC bridge circuits, series and parallel resonances, nodal and mesh analyses, superposition, source transformation, Thevenin and Norton equivalent circuits; instantaneous, mean, apparent, complex power; maximum mean-power transfer, effective voltage, power factor, conservation of power, rephasing. four terminal elements, representation through impedance, admittance, transmission and hybrid matrices.

Magnetically coupled circuits
Mutual inductance, energy in a magnetically coupled circuit, linear transformers, ideal transformers, the transformer as an isolation or matching element, power supply circuits.

Transmission lines
Elementary theory of transmission lines; telegraphist's equation; characteristic impedance; reflection coefficient, standing waves; impedance matching; Smith's chart; propagation of non periodic signals; characteristics of the most used transmission lines: balanced two-wire line, coaxial cable, microstrip, coplanar line.

Circuit frequency response
Transfer function; the decibel scale; the Bode diagram; series and parallel resonances; low-pass, high-pass, band-pass, band-stop filters.

Course entry requirements

Knowledge of the basic mathematical tools, such as systems of linear equations, complex numbers, derivatives and integrals, first and second order costant coefficients differential equations.

Course structure and teaching

Lectures (hours/year in lecture theatre): 45
Practical class (hours/year in lecture theatre): 45
Practicals / Workshops (hours/year in lecture theatre): 0

Suggested reading materials

C. Alexander, M. Sadiku. Circuiti Elettrici. McGraw–Hill.

Notes provided by the teacher.

L. Perregrini, M. Pasian, "Circuiti Elettrici", nella collana "Gli eserciziari", McGraw-Hill, 2012.

Testing and exams

The exam consists in a written test and an oral examination. The candidate must achieve at least 15/30 in the written test to be admitted to the oral examination. If the candidate has obtained at least 18/30 in the written test, he may ask to be excused from the oral test, acquiring as a final vote the minimum between the grade of the written test and 22/30.

Copyright © Facoltà di Ingegneria - Università di Pavia